

110-02

Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0° to 70°

Scott C. Asbury and Francis J. Capone

·		
		:
		ţ
		•
		i
		; ;
		i
		•

Multiaxis Thrust-Vectoring Characteristics of a Model Representative of the F-18 High-Alpha Research Vehicle at Angles of Attack From 0° to 70°

Scott C. Asbury and Francis J. Capone Langley Research Center • Hampton, Virginia

Available electronically at the following URL address: http://techreports.larc.nasa.gov/ltrs/ltrs.html

Printed copies available from the following:

NASA Center for AeroSpace Information 800 Elkridge Landing Road Linthicum Heights, MD 21090-2934 (301) 621-0390 National Technical Information Service (NTIS) 5285 Port Royal Road Springfield, VA 22161-2171 (703) 487-4650

Summary

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). The HARV is a highly instrumented, full-scale flight research aircraft that has been modified by adding a multiaxis thrust-vectoring control system. The system utilizes externally mounted, individually actuated thrust-vectoring vanes to redirect the exhaust plume from each of the HARV's two turbofan engines. Controlled deflection of the exhaust plume provides the HARV with enhanced maneuverability and control in areas where conventional aerodynamic controls are ineffective, namely at low speeds and high angles of attack.

A wingtip supported, partially metric, 0.10-scale jeteffects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Afterbody aerodynamic and thrustvectoring forces and moments were measured with an internal six-component strain-gauge balance. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from 0° to 70°, and at nozzle pressure ratios from 1.0 to approximately 5.0. An extensive matrix of vane deflection angles was tested for two nozzle configurations: an afterburning power nozzle and a military power nozzle. Results indicate that the thrust-vectoring control system of the HARV can successfully generate multiaxis thrust-vectoring forces and moments. During vectoring, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses. Significant external flow effects that were dependent on Mach number and angle of attack were noted during vectoring operation. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by the multiaxis thrustvectoring control system.

Introduction

Mission requirements for the next generation multirole fighter may necessitate aircraft capable of operating over a broader range of flight conditions than previously thought possible. To survive air combat engagements, aircraft will require improved handling qualities at high angles of attack (high alpha) including brief excursions into the poststall region. Several investigations have shown that the ability to perform transient maneuvers at low speeds and high angles of attack is a significant advantage in air combat (refs. 1 to 3). However, highalpha maneuverability can be limited because of degraded stability characteristics and inadequate aerodynamic control power. Techniques for producing control forces and moments by redirecting engine exhaust flow, known as thrust vectoring, have been extensively investigated (refs. 4 to 8). The primary benefits of thrust vectoring are that it is independent of airspeed and angle of attack, within the limits of inlet capability, and can provide the control effectiveness necessary for high-alpha flight. Other applications and benefits of thrust vectoring can be found in references 9 to 11.

The lack of validated design criteria for establishing high-alpha maneuvering requirements has limited the exploitation of thrust-vectoring technology. High-alpha poststall flight research has not received the same indepth attention as the conventional prestall tactical flight regime for the fighter aircraft mission (ref. 12). In order to accelerate the maturation of developing technologies, such as thrust vectoring, the National Aeronautics and Space Administration is conducting the High-Alpha Technology Program (ref. 13) to validate design methods for the next generation of highly maneuverable fighter aircraft. A carefully integrated effort is underway combining wind-tunnel testing, computational fluid dynamics, flight simulation, and full-scale flight experiments.

Flight experiments in the High-Alpha Technology Program are being conducted with a highly instrumented aircraft known as the High-Alpha Research Vehicle (HARV) (ref. 12). The HARV is an extensively modified F-18 fighter/attack aircraft powered by two F404-GE-400 afterburning turbofan engines rated at approximately 16000 lb static thrust at sea level. A photograph and three-view drawing of the HARV are presented in figure 1. One of the modifications to the HARV was the addition of a multiaxis thrust-vectoring control system (TVCS) for increased high-alpha maneuverability. The thrust-vectoring system consists of externally mounted, independently actuated engine vanes (three for each engine) for controlled deflection of the exhaust plume from each of the HARV's two turbofan engines. The ability to redirect the exhaust plume provides the HARV with enhanced maneuverability and control in areas where the conventional aerodynamic controls are ineffective. A photograph of the HARV during static testing of the TVCS is presented in figure 2.

This report presents the results of a wind-tunnel investigation of the F-18 HARV TVCS. A wingtip-supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. Afterbody aerodynamic and thrust-vectoring forces and moments were measured with an internal six-component strain-gauge balance. Testing was conducted at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from 0° to 70°, and at nozzle pressure

ratios from 1.0 to approximately 5.0. An extensive matrix of vane deflection angles was tested for two nozzle configurations: an afterburning power nozzle and a military power nozzle. The model wing leading-edge and trailing-edge flaps could not be deflected to match the standard control-law schedule for an F-18 at high angles of attack and were, therefore, fixed in the undeflected position throughout the investigation. All configurations were tested with the horizontal stabilators fixed at -5° (in order to clear the vane actuator covers without modifications to the stabilators) and the rudders fixed at 0°.

Symbols

All model longitudinal forces and moments are referred to the stability-axis system, and all lateral forces and moments are referred to the body-axis system. The model moment reference center was located at fuselage station (FS) 45.85, or approximately 23 percent of the mean aerodynamic chord (MAC). Thrust-vectoring vane hinge points were at FS 69.67, resulting in a moment arm from the hinge point of the thrust-vectoring vanes to the model moment reference center of 23.82 in. A discussion of the data reduction procedure, definitions of the aerodynamic force and moment terms, and the propulsion relationships used herein can be found in reference 14.

- A_t measured nozzle throat area, 3.48 in² (per nozzle) at afterburning power, 2.20 in² (per nozzle) at military power
- BL butt line, in.
- b reference wingspan, 44.88 in. (model), 37.40 ft (full-scale F-18 HARV)
- C_A afterbody axial-force coefficient along body axis, $\frac{F_A}{a \cdot S}$
- $C_{A,a}$ afterbody axial-force coefficient (thrust removed) along body axis, $C_{A,a} = C_A$ at NPR = 1.0 (jet off)
- $C_{D,a}$ afterbody aerodynamic (thrust removed) drag coefficient along stability axis, $C_{D,a} = C_{(D-F)}$ at NPR = 1.0 (jet off)
- $C_{(D-F)}$ afterbody drag-minus-thrust coefficient along stability axis, $C_A \cos \alpha + C_N \sin \alpha$
- $C_{F,j}$ thrust coefficient along body axis, $\frac{F_j}{P_a S}$
- $C_{F,N}$ jet normal-force coefficient in body-axis system, $\frac{F_N}{p_a S}$
- $C_{F,S}$ jet side-force coefficient, $\frac{F_S}{p_a S}$

- C_L total afterbody lift coefficient in stabilityaxis system, including thrust component, $C_N \cos \alpha - C_A \sin \alpha$
- $C_{L,a}$ afterbody aerodynamic (thrust removed) lift coefficient in stability-axis system, $C_{L,a} = C_L$ at NPR = 1.0 (jet off)
- C_l total afterbody rolling-moment coefficient in body-axis system, including thrust component, $\frac{\text{Rolling moment}}{q_{\infty}Sb}$
- $C_{l,a}$ afterbody aerodynamic (thrust removed) rolling-moment coefficient in body-axis system, $C_{l,a} = C_l$ at NPR = 1.0 (jet off)
- C_m total afterbody pitching-moment coefficient including thrust component, $\frac{\text{Pitching moment}}{q_{\infty}S\bar{c}}$
- $C_{m,a}$ afterbody aerodynamic (thrust removed) pitching-moment coefficient, $C_{m,a} = C_m$ at NPR = 1.0 (jet off)
- C_N afterbody normal-force coefficient in bodyaxis system, $\frac{F_N}{a \cdot S}$
- $C_{N,a}$ afterbody normal-force coefficient (thrust removed) in body-axis system, $C_{N,a} = C_N$ at NPR = 1.0 (jet off)
- C_n total afterbody yawing-moment coefficient in body-axis system, including thrust component, $\frac{\text{Yawing moment}}{a \text{ Sb}}$
- $C_{n,a}$ afterbody aerodynamic (thrust removed) yawing-moment coefficient in body-axis system, $C_{n,a} = C_n$ at NPR = 1.0 (jet off)
- C_Y total afterbody side-force coefficient, including thrust component, $\frac{F_S}{a S}$
- $C_{Y,a}$ afterbody aerodynamic (thrust removed) sideforce coefficient, $C_{Y,a} = C_Y$ at NPR = 1.0 (jet off)
- reference wing mean aerodynamic chord,
 13.82 in. (model), 11.52 ft (full-scale F-18 HARV)
- D afterbody drag along stability axis, lbf
- d_t measured minimum nozzle diameter at throat, in.
- F thrust along stability axis, lbf
- F_A measured axial force along body axis, positive downstream, lbf

$F_{g,l}$	gross thrust for full-scale F-18 HARV, left engine, lbf	w _i	ideal isentropic weight-flow rate,
$F_{g,r}$	gross thrust for full-scale F-18 HARV, right engine, lbf		$A_t P_{t,j} \left(\frac{2}{\gamma+1}\right)^{\frac{\gamma+1}{2(\gamma-1)}} \sqrt{\frac{\gamma g^2}{T_{t,j} R_j}}$, lbf/sec (for
F_i	ideal isentropic gross thrust,	W	NPR > 1.89) measured weight-flow rate, lbf/sec
	$w_p \sqrt{\frac{R_j T_{t,j}}{g^2} \frac{2\gamma}{\gamma - 1} \left[1 - \left(\frac{1}{\text{NPR}}\right)^{(\gamma - 1)/\gamma} \right]}$, lbf	x	axial distance measured from nozzle exit, positive downstream, used to define position of thrust-vectoring vanes relative to nozzle exit
F_{j}	measured thrust along body axis, lbf		(see fig. 5(b)), in.
F_N	measured normal force in body-axis system, positive upward, lbf	x_o	axial location of nozzle exit, used to define position of thrust-vectoring vanes relative to nozzle exit (see fig. 5(b)), in.
F_r	resultant thrust, $\sqrt{F_j^2 + F_N^2 + F_S^2}$, lbf	y	vertical distance measured from nozzle exit,
F_{S}	measured side force, positive to right when looking upstream, lbf		positive away from nozzle centerline, used to define position of thrust-vectoring vanes relative to nozzle exit (see fig. 5(b)), in.
g I _{yy}	gravitational constant, 32.174 ft/sec ² full-scale F-18 HARV pitch inertia with	y_o	vertical location of nozzle exit, used to define position of thrust-vectoring vanes relative to
	60 percent of internal fuel capacity, 174246 slug-ft ²	α	nozzle exit (see fig. 5(b)), in. angle of attack, deg
I_{zz}	full-scale F-18 HARV yaw inertia with	γ	ratio of specific heats, 1.3997 for air
22.	60 percent of internal fuel capacity, 189336 slug-ft ²	δ	geometric vector angle of thrust-vectoring vane, deg
M	free-stream Mach number	δ_p	resultant pitch thrust vector angle at static
NPR	nozzle pressure ratio, $p_{t,}/p_a$ at $M = 0$ or $p_{t,}/p_{\infty}$ at $M > 0$		conditions, positive deflection downward (pitch down), $tan^{-1}(F_N/F_j)$, deg
NPR_d	design nozzle pressure ratio (NPR for fully expanded flow at nozzle exit)	δ_r	rudder deflection, positive deflection trailing edge left, deg
p_a	ambient pressure, psi	δ_s	stabilator deflection, positive deflection trail- ing edge down, deg
$p_{t,j}$	average jet total pressure, psi	δ_y	resultant yaw thrust vector angle, positive deflection to left (yaw left), $\tan^{-1}(F_S/F_i)$, deg
p_{∞}	free-stream static pressure, psi	θ	nozzle internal convergence angle (see
ġ	pitch acceleration, $\frac{180}{\pi} \times \frac{C_m q_{\infty}' S \bar{c}}{I_{yy}}$, deg/sec ²	Abbrevia	fig. 7), deg ations:
	"	ASME	American Society of Mechanical Engineers
q_{∞}	free-stream dynamic pressure, psi	FS	fuselage station
q_∞'	flight dynamic pressure, 61.22 psf (for $M = 0.30$, Altitude = 20000 ft)	HARV	High-Alpha Research Vehicle
R_{j}	gas constant, 1716 ft ² /sec ² -°R (for γ = 1.3997)	LEX	leading-edge extension
,	190 C a' Sh	MAC	mean aerodynamic chord
_r	yaw acceleration, $\frac{180}{\pi} \times \frac{C_n q_{\infty}' Sb}{I_{zz}}$, deg/sec ²	TVCS Subscrip	thrust-vectoring control system
S	wing reference area, 576.00 in ² (model),	A	top vane, left engine
	400 ft ² (full-scale F-18 HARV)	В	lower left vane, left engine
$T_{t,j}$	average jet total temperature, °R	C	lower right vane, left engine

- D top vane, right engine
- E lower left vane, right engine
- F lower right vane, right engine

Apparatus and Procedure

Wind Tunnel

This investigation was conducted in the Langley 16-Foot Transonic Tunnel, a single-return, continuous-flow, atmospheric wind tunnel with a slotted octagonal test section and continuous air exchange. The wind tunnel has a continuously variable airspeed with a Mach number range from 0.20 to 1.30. Test-section plenum suction is used for speeds above Mach 1.05. The wall divergence in the test section is adjusted as a function of Mach number and airstream dew point in order to eliminate any longitudinal static-pressure gradients in the test section. The average Reynolds number per foot ranges from about 1.20×10^6 at a free-stream Mach number of 0.2 to about 4.10×10^6 at a free-stream Mach number of 1.30. A complete description of this facility and its operating characteristics can be found in reference 15.

Model and Support System

An existing 0.10-scale afterbody jet-effects model of an F-18 prototype aircraft (ref. 16) was employed for this investigation and is shown in the sketch of figure 3 and the photographs of figure 4. The wingtip-supported model approximated the HARV external lines, with major differences being (1) faired over inlets (required for powered-model tests and located on the nonmetric forebody well forward of the metric afterbody), (2) wing alterations near the tips (required for the model support system), (3) nose strakes, and (4) leading-edge extension (LEX) slots. The model afterbody was extensively modified to simulate the thrust-vectoring control system of the F-18 HARV. Details of the thrust-vectoring hardware are presented in figure 5. The term "afterbody," as used in this paper, refers to the metric portion of the model (the shaded portion in fig. 3), on which forces and moments were measured with a six-component strain-gauge balance. The metric afterbody included the aft fuselage, nozzles (including internal thrust hardware), thrust-vectoring control system, and empennage surfaces. (See fig. 6.) The model forebody and wing were nonmetric, and the metric break was located at FS 57.00. A 0.10-in. gap in the external skin at the metric-break station prevented fouling between the nonmetric forebody and wing and the metric afterbody. A flexible Teflon strip in the metric-break gap was used as a seal to prevent flow into the model.

As shown in figures 3 and 4, the model was supported at the wingtips in the wind tunnel. The outer wing panels, from 65 percent of the semispan to the tip, were modified from airplane lines to accommodate the wingtip support system and air supply system. Two wingtip booms were attached to the tunnel support system with V-struts, as shown in figure 4(b). High-pressure air and instrumentation lines were routed through the V-struts and wingtip booms and entered the model fuselage through passages in both wings. High-pressure air routed through each wing was discharged into a common plenum in the center section of the model forebody.

The wingtip support system has the unique feature of being able to set a model to a fixed incidence angle relative to the support system, which has pitch angle capability from -10° to 25°. This allows testing of models to high angles of attack while keeping the model at or near the wind-tunnel centerline. During this investigation, the model incidence angle relative to the support system was initially set at 8° to allow testing at angles of attack from -2° to 33° (fig. 4(a)). With the test matrix completed for angles of attack up to 33°, the model incidence relative to the support system was changed to 45° to allow testing at angles of attack from 35° to 70° (fig. 4(b)). Changing model incidence relative to the support system often results in slight discontinuities in aerodynamic data obtained during wind-tunnel investigations. Not unexpectedly, the results of this investigation are characterized by slight discontinuities in the data between angles of attack of 32° and 35°.

Twin-Jet Propulsion Simulation System

An external high-pressure air source provided a continuous flow of clean, dry air to the model at a controlled stagnation temperature of about 530°R (70°F) at the nozzles. This high-pressure air was transferred from a common plenum in the model forebody to the metric afterbody by means of two flow-transfer assemblies. A sketch showing details of one of these assemblies is presented in figure 6. Two flexible metal bellows were located in each flow-transfer assembly to compensate for axial forces caused by pressurization and to act as seals between the nonmetric portion and the metric portion of the model.

Transition and instrumentation sections, including 17.9-percent-open choke plates, were attached to the downstream end of each flow-transfer assembly. Each instrumentation section contained six total-pressure probes (three probes each on two rakes) and one total-temperature probe downstream of the transition section and choke plate. Thus, ideal nozzle performance parameters calculated from these measurements are free of

losses from the transition sections. The weight-flow rate of the high-pressure air supplied to the exhaust nozzles was determined from a calibrated critical flow venturi system in the air line external to the wind tunnel.

Thrust-Vectoring Control System

Full-Scale F-18 HARV

The full-scale F-18 HARV TVCS consists of three externally mounted deflecting vanes positioned about the periphery of each engine nozzle (fig. 1). During non-vectoring conditions, the vanes are retracted well outside the exhaust plume; multiaxis thrust vectoring is achieved by controlled deflection of selected vanes into the exhaust flow. To prevent thermal constraints on the aircraft engines, a maximum of two vanes on each engine are deployed at a given time. Vane actuation is accomplished by means of modified aileron electrohydraulic actuators mounted external to the aircraft; maximum vane rotation rate is 80 deg/sec. While an externally mounted vane actuation system is far from an optimum installation, aerodynamic drag penalties are acceptable for flight testing of the TVCS.

Static investigations of postexit vane-vectoring concepts and the F-18 HARV TVCS were performed to aid in the design of the thrust-vectoring vanes (refs. 17 through 19). These investigations concluded that the most effective vane design incorporated double curvature on the vectoring surface, that is, axial and radial curvature. In addition, the vanes were designed with clipped corners at the trailing edge to allow maximum vector angles without physical vane interference. The larger top vanes were designed to generate a greater nose-down pitching moment, while the bottom (lower left and lower right) vanes on each engine are used together to generate sufficient nose-up pitching moment.

The orientation of the HARV thrust-vectoring system was dictated by structural considerations and the necessity to avoid interference with the aerodynamic control surfaces. However, the inside trailing edges of the stabilators required slight modifications (top view of fig. 1(b)) to provide clearance for the lower outboard vane actuator housings. To accommodate the vane actuation system, the engines were modified by removing the divergent portion of each nozzle. Eliminating the divergent portions of the nozzles changed each nozzle type to a convergent nozzle (with lower performance at high NPR), but allowed easier installation of the vane actuation system on the flight test vehicle. The remaining convergent nozzle hardware was modified to maintain structural integrity.

The weight of the thrust-vectoring control system installation on the F-18 HARV is approximately 2200 lb.

With the addition of a spin recovery chute system, emergency electrical and hydraulic systems, and ballast, an additional 1500 lb has been added for a thrust-vectoring control system weight increase of approximately 3700 lb. An additional 419 lb resulted from the inclusion of equipment and wiring not directly associated with the thrust-vectoring control system. Total weight for the modified F-18 HARV aircraft is 36099 lb at a 60-percent internal fuel condition.

0.10-Scale Jet-Effects Wind-Tunnel Model

Modifications were made to the existing 0.10-scale jet-effects wind-tunnel model (ref. 16) starting at FS 63.47 to simulate the thrust-vectoring control system of the HARV. These modifications consisted of removing the divergent section of the convergent-divergent exhaust nozzles and adding the thrust-vectoring hardware, vane actuator fairings, and spin-chute canister. These modifications are shown on the model in figures 5 and 6. Two nozzle power settings were investigated by using two sets of interchangeable inner nozzles; one set represented a military (dry power) setting with a measured throat area of 2.20 in², while the other set represented an afterburning power setting with a measured throat area of 3.48 in². A sketch showing geometric details of the inner nozzles is presented in figure 7.

The model vane planform area was 3.60 in² for each top vane and 2.63 in² for each lower vane (fig. 8). Thus, the top vanes were approximately 37 percent larger than the lower vanes. The thrust-vectoring vanes were mounted to the model vane supports, which were designed with multiple alignment holes in order to set vane deflection angles (fig. 9). The axial and radial locations of the thrust-vectoring vanes relative to the nozzle exit are presented in figure 5(b). (Note that left and right thrust-vectoring vane installations are mirror images of each other.) The vane supports were covered with simulated actuator fairings and a simulated spin-chute canister was added to model the flight test vehicle spin recovery chute system. Geometric details of the model vane support fairings and spin-chute canister are presented in figures 10 and 11, respectively.

Tests

This investigation was conducted in the Langley 16-Foot Transonic Tunnel at wind-off conditions and at free-stream Mach numbers of 0.30, 0.50, and 0.70. Angle of attack was varied from 0° to 70°, depending on Mach number. Angle of attack was limited at the higher Mach numbers by the maximum load capabilities of the wing. Nozzle pressure ratio was varied from 1.0 (jet off) to 5.0, depending on nozzle power setting and Mach number. Thrust-vectoring vane deployment angles investigated

were -10° (fully retracted), 0°, 5°, 10°, 15°, 20°, and 25°. Vane deployment angles were chosen based on previous static investigations of the HARV TVCS (refs. 18 and 19), which determined that the thrust-vectoring vanes do not vector the exhaust flow until deployed at 10°. A complete listing of model configurations tested during this investigation is presented in table 1.

Basic data were obtained by holding nozzle pressure ratio constant and varying angle of attack; nozzle pressure ratio sweeps were conducted at selected, constant angles of attack. During angle-of-attack sweeps, nozzle pressure ratio was set to 4.15 at military power and 4.25 at afterburning power to approximate the NPR of the HARV at flight Mach numbers from 0.30 to 0.70. The model wing leading-edge and trailing-edge flaps could not be deflected to match the standard control-law schedule for the F-18 at high angles of attack and were. therefore, fixed in the undeflected position throughout the investigation. The horizontal stabilators were fixed at -5° (in order to clear the vane actuator covers without modifications to the stabilators), and the rudders were fixed at 0° throughout the investigation. All tests were conducted with 0.10-in-wide boundary-layer transition strips located 1.50 in. from the tip of the forebody nose and 1.00 in. aft (streamwise) of all lifting surfaces and inlet (imaginary) leading edges. These strips consisted of No. 100 carborundum grit sparsely distributed in a thin film of lacquer.

Data Reduction

All data for both the model and the wind tunnel were recorded on magnetic tape. Approximately 50 frames of data, measured at a rate of 10 frames per second, were taken for each data point. Averaged values of the data measurements were used to compute basic nozzle performance parameters and aerodynamic force and moment coefficients. These coefficients represent the total afterbody forces and moments (including thrust contributions) nondimensionalized by free-stream dynamic pressure, wing reference area (576 in²), wing mean aerodynamic chord (13.82 in.), and wingspan (44.88 in.). The moment reference center was located at FS 45.85, and the thrust-vectoring vane hinge points were located at FS 69.67.

The balance measurements were initially corrected for model weight tares and isolated balance component interactions. Because the centerline of the balance was below the flow-transfer assembly (bellows) centerline, a force and moment interaction (tare) between the bellows and the balance existed. In addition, although the bellows arrangement in the flow-transfer system was designed to minimize forces on the balance caused by pressurization, small bellows tares on the six-component balance still

existed. These tares resulted from a small pressure difference between the ends of the bellows when air system internal velocities were high and from small differences in the spring constant of the forward and aft bellows when the bellows were pressurized. Tares due to interactions between the bellows and the balance were determined by single and combined calibration loadings on the balance, with and without the jet operating with ASME calibration nozzles (which have known performance over the range of expected internal pressures) installed. Tare forces and moments were then removed from the appropriate balance component data. Additional balance corrections were also made to account for metric-break gap, base, and internal cavity pressure tares.

At static (M=0) conditions, the internal thrust ratio F_j/F_i is the ratio of the measured thrust along the body axis to the ideal thrust. Ideal thrust F_i is based on measured weight flow w_p , jet total pressure $p_{t,j}$, and jet total temperature $T_{t,j}$. (See the section "Symbols.") The resultant thrust ratio F_r/F_i is the resultant thrust divided by the ideal thrust. Resultant thrust is obtained from the measured axial, normal, and side components of the jet resultant force. From the definitions of F_j and F_r , it is obvious that the thrust along the body axis F_j includes a reduction in thrust that results from turning the exhaust vector away from the axial direction, whereas the resultant thrust F_r does not.

The nozzle discharge coefficient w_p/w_i is the ratio of measured weight-flow rate from upstream venturi measurements to ideal weight-flow rate, which is calculated from total-pressure and total-temperature measurements and the nozzle throat area A_t (the measured geometric minimum area in the nozzle). This discharge coefficient is a measure of the nozzle efficiency in passing weight flow. The discharge coefficient is reduced by any momentum and vena contracta losses (the tendency for a local flow separation bubble to form in the vicinity of the nozzle throat, resulting in an effective throat area less than A_t).

The resultant pitch and yaw thrust vector angles δ_p and δ_y are the net effective angles at which the thrust-vectoring mechanism turns the exhaust flow away from the axial direction. As indicated in the section "Symbols," these angles are calculated from the force components measured by the balance and do not necessarily represent the actual plume angle of the exhaust flow.

At wind-on conditions, corrected longitudinal forces and moments measured by the balance were transferred from the body axis of the metric portion of the model to the stability-axis system. Angle of attack α , the angle between the afterbody centerline and the relative wind at zero sideslip, was determined by applying corrections for afterbody deflection (caused when the model and balance

bend under aerodynamic load) and tunnel flow angularity to the angle of the nonmetric forebody determined from a calibrated attitude indicator. The flow angularity correction was 0.1°, which is the average upflow angle measured in the Langley 16-Foot Transonic Tunnel.

Because this investigation was conducted over a large angle-of-attack range, the attitude of the nonmetric forebody was determined with two calibrated attitude indicators: one in the model forebody, the other in the support system. During testing at angles of attack from -2° to 33°, the attitude indicator in the model nose was used to compute angle of attack. Because the attitude indicator in the model forebody was unreliable at angles of attack above 45°, the attitude indicator in the support system was used to determine the attitude of the nonmetric forebody when the model incidence was set at 45°. The difference between the angle of the model forebody and that of the attitude indicator in the support system was measured (wind off) and applied as an additional correction when computing the angle of attack of the metric afterbody. Because of the rigidity of the wingtip support system, any deflections of the support system at the high angle-of-attack, low Mach number conditions were considered to be negligible.

Presentation of Results

The results of this investigation are presented in both tabular and plotted form. Table 1 is an index to tables 2 to 39, which contain static and aeropropulsive performance characteristics for each model configuration investigated. Table 40 presents typical engine performance characteristics of the full-scale F-18 HARV obtained from reference 20. In the present report, a geometric vane deflection angle of -10° will always be considered the fully retracted vane position, and larger vane angles will be considered a deployed vane position.

Comparison and summary plots for selected configurations are presented in figures 12 to 31 as follows:

Figure
Effect of power setting on static performance characteristics with vanes fully retracted12
Nozzle static performance with the thrust- vectoring vanes deployed at—
Afterburning power
Military power
Resultant static thrust-vectoring envelopes at-
Afterburning power
Military power
Afterbody aerodynamic characteristics at
afterburning power and $NPR = 4.25$ with
vanes fully retracted17

Effect of power setting on afterbody aerodynamic characteristics at scheduled NPR with vanes fully retracted
Afterbody aerodynamic characteristics at after- burning power and NPR = 4.25 with—
Vanes A,D deployed
Vanes B,E and C,F deployed
Vanes B,E deployed
• •
Individual afterbody drag and thrust contributions that make up $C_{(D-F)}$
Variation in afterbody drag and thrust contributions with angle of attack at afterburning power with NPR = 4.25 and $M = 0.30 \dots 24$
Afterbody aerodynamic characteristics at military power and NPR = 4.15 with—
Vanes A,D deployed
Vanes B,E and C,F deployed
Vanes B,E deployed
Vanes A,D and B,E deployed
External flow effects on pitching moment at afterburning power and NPR = 4.25 29
External flow effects on yawing moment at afterburning power and NPR = 4.25 30
Computed aerodynamic and propulsive control capability for F-18 HARV

Results and Discussion

Static Performance

Static (M=0) performance characteristics that show the effects of nozzle power setting and thrust vectoring are presented in figures 12 to 16. Static nozzle performance is presented in terms of internal thrust ratio F_j/F_i , resultant thrust ratio F_r/F_i , resultant pitch vector angle δ_p , resultant yaw vector angle δ_y , and nozzle discharge coefficient w_p/w_i . Recall that the divergent portion of each exhaust nozzle was removed prior to the installation of the thrust-vectoring control system, which changed each nozzle to a convergent type. It was expected that these modifications would result in thrust ratio trends typical of convergent nozzles (ref. 21).

Before continuing with the discussion of results, some general performance characteristics of convergent nozzles should be noted. In a convergent nozzle, thrust ratios peak when choked flow conditions are established and nozzle exit pressure is equal to ambient pressure (i.e., flow in the nozzle is fully expanded). The nozzle pressure ratio corresponding to the fully expanded condition is known as the design NPR (NPR $_d$) and is equal to

1.89 for a convergent nozzle. Losses in thrust ratio at NPR_d are attributed to friction in the nozzle and exitflow angularity effects. When a convergent nozzle operates at NPR > 1.89, nozzle exit pressure is higher than ambient pressure and the exhaust flow must expand to ambient conditions downstream of the nozzle exit (i.e., flow in the nozzle is underexpanded). External flow expansion corresponds to a loss in possible thrust and results in losses in thrust ratio for convergent nozzles at NPR > 1.89.

Effects of Nozzle Power Setting

Static performance characteristics that show the effects of nozzle power setting (afterburning versus military) with the thrust-vectoring vanes fully retracted are presented in figure 12. The internal thrust ratio F/F_i , resultant thrust ratio F_r/F_i , and nozzle discharge coefficient w_p/w_i are presented as a function of nozzle pressure ratio NPR. Thrust ratio trends at the military power setting were typical of a convergent nozzle (ref. 21), which experiences peak performance at NPR = 1.89 and reduced performance at higher NPR due to increased flow underexpansion effects. However, thrust ratios at the afterburning power setting peaked at a higher NPR $(NPR_d \approx 2.5)$, and their magnitude was larger than at the military power setting (fig. 12). This behavior is indicative of a convergent-divergent nozzle with an effective expansion ratio of about 1.17 (compared with an expansion ratio of 1.00 for a convergent nozzle). The increased proximity of the exhaust plume to the retracted vanes at afterburning power (fig. 5(b)) allowed flow expansion to occur on the retracted vane surfaces (thereby reducing underexpansion losses) and resulted in behavior typical of a low expansion ratio convergent-divergent nozzle. Note that with the vanes fully retracted F/F_i and F_r/F_i were identical, indicating that no vectoring of the exhaust plume occurred.

Discharge coefficient w_p/w_i levels differed between the afterburning and military power settings because w_n/w_i is influenced by nozzle geometry upstream of and in the vicinity of the nozzle throat (fig. 12). As indicated in figure 7, the nozzles at the military power setting had a higher internal convergence angle θ than at the afterburning power setting. The higher convergence angle resulted in higher vena contracta losses (the tendency for a local flow separation bubble to form near the nozzle throat) and, thus, in lower values of discharge coefficient. Such trends are typical of convergent nozzle performance (ref. 21). Geometric changes downstream of the nozzle throat plane do not generally affect discharge coefficient. For the nozzles of this investigation, thrust vectoring by vane deflection was always implemented downstream of the nozzle throat and resulted in insignificant effects on w_n/w_i . Consequently, w_p/w_i is not presented for the vectoring configurations, since the trends essentially mirrored results with the vanes fully retracted.

Effects of Thrust Vectoring

Static performance characteristics at afterburning and military power with the thrust-vectoring vanes deployed are presented in figures 13 and 14, respectively. The internal thrust ratio F/F_i , resultant thrust ratio F_r/F_i , resultant pitch vector angle δ_p , and resultant yaw vector angle δ_{v} are presented as a function of NPR. A matrix of vane deflection angles was tested at each power setting in order to provide a static thrust-vectoring envelope. During vectoring, at least one vane on each engine was always fully retracted, while one or two of the remaining vanes on each engine were deployed into the exhaust flow. The matrix of vane deflections tested was divided as follows: top vanes deployed for positive pitch vector angle (pitch down), lower left and lower right vanes deployed for negative pitch vector angle (pitch up), lower left vanes deployed for combined negative pitch vector and negative yaw vector angles (pitch up and yaw right), and top and lower left vanes deployed for combined positive pitch vector and negative yaw vector angles (pitch down and yaw right). The maximum vane deployment angle was 25° at each vectoring condition, except for the pitch up case, where physical interference between the model hardware limited the maximum vane deflections and resulted in vane deployment angles of 25° for vanes B and F and 20° for vanes C and E. Because the vane installations on the left and right engines were mirror images of each other, yaw vectoring was only performed in the negative direction (yaw right) during this investigation.

Certain trends (as calculated from the multiaxis thrust-vectoring forces and moments) dominated the vectored thrust data. Increased deflection of the vanes resulted in higher turning angles due to an increased amount of vane surface in contact with the exhaust flow (figs. 13 and 14). However, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle, and large amounts of flow turning were always accompanied by large thrust losses. These losses were expected, based on previous studies, and were a direct result of deploying the vanes into the supersonic jet-exhaust flow (ref. 17).

Afterburning power. Resultant thrust vector angles at afterburning power did not always remain constant or behave linearly with increasing NPR (fig. 13). Thrust vector angles increased or decreased with increasing NPR, depending on which vanes were deployed and on the magnitude of the vane deployment angle. The largest variations in resultant thrust vector angles occurred when the top vanes were deployed. For example, δ_p at the full

pitch down (top) vane deployment ($\delta_{A,D} = 25^{\circ}$) increased from 8° at NPR = 2.0 to approximately 12° at NPR = 4.0 (fig. 13(b)). However, δ_p at the full pitch up (bottom) vane deployment ($\delta_{B,F} = 25^{\circ}$, $\delta_{C,E} = 20^{\circ}$) varied by only 1° across the NPR range (fig. 13(c)).

Because the vanes were not always entirely within the exhaust flow, many factors influenced the performance of the thrust-vectoring control system. The amount of vectoring generated by a deployed vane was highly dependent on vane position with respect to the exhaust plume. Once choked flow conditions are established in a convergent nozzle, a further increase in NPR typically results in a slightly larger exhaust plume. If this were the dominant factor, one would expect a fairly linear increase in resultant vector angles with increasing NPR as more of the vane surface comes into contact with the exhaust plume. However, many additional factors influenced the magnitude of resultant thrust vector angles generated. These include impingement effects of the vectored jet plume on the retracted vanes, venting of the exhaust plume between vanes during vectoring (an example can be seen in fig. 2 during static testing of the TVCS), and the inherently unpredictable aerodynamic characteristics on the back surface of the deflected vane(s) as the plume expands with increasing NPR.

Military power. The military power results for vane deployments are presented in figure 14. Trends in performance and thrust vectoring similar to those observed at the afterburning power setting were also apparent at the military power setting. However, nozzles at the afterburning power setting typically provided higher resultant thrust vector angles than at the military power setting, especially for bottom vane deployments. For example, the full pitch down (top) vane deployment ($\delta_{A,D} = 25^{\circ}$) produced resultant pitch vector angles of 12° at both the afterburning and military power settings. (Compare figs. 13(b) and 14(b).) However, the full pitch up (bottom) vane deployment ($\delta_{B,F} = 25^{\circ}$, $\delta_{C,E} = 20^{\circ}$) produced resultant pitch vector angles of 17° at the afterburning power setting as compared with 14° at the military power setting. (Compare figs. 13(c) and 14(c).) The increased flow turning at afterburning power is attributable to the larger plume at the afterburning power setting. This placed the exhaust flow closer to the vanes and allowed the vanes to contact a larger portion of exhaust flow. Obviously, this effect was most substantial when multiple vanes on each engine were deployed.

One trend that differed between the afterburning and military power settings was the effect of increasing NPR on resultant vector angles. At afterburning power, the effect of NPR varied with vane deployment angle. At military power, the effect of NPR was predominately favorable as resultant thrust vector angles remained con-

stant or increased with increasing NPR. (See fig. 14(c), for example.)

Thrust-Vectoring Envelopes

The results of the parametric vane deployments are summarized in figures 15 and 16 as a thrust-vectoring envelope for each nozzle power setting and NPR tested. Results are presented as resultant pitch vector angle δ_p plotted against resultant yaw vector angle δ_y . The perimeter of the envelope represents maximum vane deployment angles. Points within the maximum envelope represent resultant vector angles obtained with lesser vane deflections. Requirements for the F-18 HARV TVCS, obtained from reference 22, are plotted in figures 15 and 16 as solid symbols. As discussed previously, yaw vectoring was only performed in the negative direction during this investigation. The positive δ_y portion of the thrust-vectoring envelope was approximated by assuming that the envelope is symmetric in yaw.

In general, both the afterburning and military power thrust-vectoring envelopes are asymmetric in pitch, with the pitch-vectoring capability biased towards the negative side (pitch up) at low values of δ_y , and towards the positive side (pitch down) at high values of δ_y , a result of the use of three thrust-vectoring vanes positioned asymmetrically about the periphery of each engine nozzle. Pure pitch vector or yaw vector angles are possible by utilizing specific vane deflection combinations. Unfortunately, maximum vector angles are not possible simultaneously in pitch and yaw; this was an anticipated result of the vane geometry.

Comparison of the afterburning power envelopes (fig. 15) with the military power envelopes (fig. 16) illustrates the increased turning effectiveness of the vanes when actuated on the afterburning power nozzle. The thrust-vectoring requirements fall within the afterburning power envelopes (fig. 15), but are typically outside the military power envelopes (fig. 16). This indicates that the afterburning power setting is needed to meet the requirements of reference 22.

Although useful levels of thrust vectoring were obtained, the resultant thrust vector angles generated by the thrust-vectoring control system were always less than the corresponding geometric vane deflection angle. Previous investigations (see refs. 5, 6, and 8, for example) have studied thrust-vectoring concepts that provide a more effective (resultant thrust vector angle approximately equal to geometric vector angle) thrust vector capability. However, the thrust-vectoring control system for the HARV was selected more from schedule, complexity, and cost issues, rather than from performance issues. In these respects, the external-vane concept was a good selection.

Performance at Forward Speeds

Basic data for each configuration investigated at wind-on conditions are presented as total afterbody aerodynamic coefficients (which include thrust contributions) in figures 17 to 28. Included are lift coefficient C_L , pitching-moment coefficient C_m , drag-minus-thrust coefficient $C_{(D-F)}$, rolling-moment coefficient C_l , yawing-moment coefficient C_n , and side-force coefficient C_L . Recall that all longitudinal forces and moments $(C_L, C_{(D-F)})$, and C_m) are referred to the stability-axis system and the lateral forces and moments (C_l, C_n, C_n, C_n) are referred to the body-axis system. Because the six-component balance resolved the measured forces and moments into the body-axis system rather than the stability-axis system, C_L and $C_{(D-F)}$ were determined from the following equations:

$$C_L = C_N \cos \alpha - C_A \sin \alpha$$

$$C_{(D-F)} = C_A \cos \alpha + C_N \sin \alpha$$

where C_N and C_A are the balance-measured body-axis normal-force and axial-force coefficients, respectively. Body-axis axial-force coefficient C_A is measured positive in the downstream direction and is, therefore, increased by increased drag and reduced by increased thrust.

Afterbody Aerodynamic Characteristics With Vanes Fully Retracted

Afterbody aerodynamic characteristics that show the effects of Mach number and angle of attack are presented in figure 17 at afterburning power and NPR = 4.25 with the vanes fully retracted. The trends observed are typical of similar afterbody configurations previously tested (ref. 16). At a constant Mach number, lift coefficient C_L and drag-minus-thrust coefficient $C_{(D-F)}$ increased with increasing angle of attack, while pitching-moment coefficient decreased with increasing angle of attack. These changes result from increased lift on the stabilators and changes in stability axis thrust components that occur with increased angle of attack.

At constant angle of attack, the effect of increasing Mach number was to reduce C_L and increase $C_{(D-F)}$ because of increased drag and reduced thrust. Large increases in afterbody drag would not typically be expected for a clean afterbody configuration at the Mach numbers presented; however, the externally mounted vane actuation system and spin-chute canister of the HARV configuration contributed to increased afterbody drag at higher subsonic Mach numbers. The reduction in thrust with increasing Mach number is the result of a requirement to maintain constant NPR across the Mach number range. Because free-stream static pressure p_{∞}

decreases with increasing Mach number in the wind tunnel, jet total pressure $p_{t,j}$ required to maintain constant NPR also decreases. Lowering jet total pressure with Mach number reduces the momentum of the exhaust flow and, consequently, reduces thrust. A reduction in thrust with increasing Mach number is contrary to the behavior of the full-scale F-18 HARV, which experiences increased thrust (at constant altitude and power setting, see table 40) at higher Mach numbers.

As discussed previously, subscale model tests in the Langley 16-Foot Transonic Tunnel utilize a cold-jet propulsion simulation system to simulate engine exhaust. While the cold jet does not accurately model the thrust generated (because of the small scale, cold temperature, and lack of real gas effects), it does provide a reasonable representation of the flight exhaust plume shape and its variation with NPR and Mach number. Through the simulation of the plume shape, external flow effects (which result from the interaction of the free stream with the exhaust plume and adjacent model surfaces) can be determined. External flow effects are a critical contribution to propulsion-installation calculations that correct the installed engine thrust for inlet, nozzle, and throttle-dependent trim drags.

Effects of Nozzle Power Setting With Vanes Fully Retracted

The effects of nozzle power setting on afterbody aerodynamic characteristics at scheduled NPR with the vanes fully retracted are presented in figure 18. At a constant Mach number, changing from the military to afterburning power setting resulted in increased thrust. An increase in thrust at afterburning power results from increased mass flow through the nozzles and beneficial flow expansion on the retracted vane surfaces (discussed previously in the section "Static Performance"). Therefore, because of increased thrust, $C_{(D-F)}$ was lower at the afterburning power setting.

As shown in figure 18(a), changing from the military to afterburning power setting significantly increased C_L , especially at higher angles of attack. The increase in C_L is the result of a decrease in C_A that occurred with increased thrust. As shown in figure 18(b), the effects of nozzle power setting are diminished at M=0.50 because of the decrease in thrust (at constant NPR) and increase in drag associated with higher Mach numbers (i.e., thrust is a proportionately smaller contributor to afterbody aerodynamic coefficients at higher Mach numbers in the wind tunnel).

Effects of Thrust Vectoring

Afterburning power. The effects of thrust vectoring at afterburning power are presented in figures 19 to 22 at

NPR = 4.25 for each Mach number investigated. In general, the variation of afterbody aerodynamic coefficients with vane deployments followed expected trends. Longitudinal forces and moments were generated by deploying the top vanes, $\delta_{A,D}$ (fig. 19), or the bottom vanes, $\delta_{B,E}$ and $\delta_{C,F}$ (fig. 20). A combination of longitudinal and lateral forces and moments were generated by deploying the lower left vanes, $\delta_{B,E}$ (fig. 21), or the top and lower left vanes, $\delta_{A,D}$ and $\delta_{B,E}$ (fig. 22). As indicated by the static thrust vector envelopes in figure 15, pure lateral forces and moments were possible with certain vane deflection combinations. As expected, deployment of the lower left vanes in conjunction with the top vanes reduced the magnitude of longitudinal forces and moments generated by the top vanes. (Compare figs. 19(a) and 22(a).)

The increment in C_L (or C_Y) generated by the deployed vanes was caused primarily by the jet-lift (or side) component of the nozzle resultant thrust. However, additional contributions resulted from an aerodynamic flap effect of the deflected vanes and a jet-induced interference effect. These "external flow effects" will be discussed in detail in a subsequent section. Vane deployments at higher Mach numbers were less effective at producing multiaxis thrust-vectoring forces and moments because of the reduction in thrust for the wind-tunnel model (discussed previously) that occurred at higher Mach numbers. (Compare figs. 19(a), 19(b), and 19(c), for example.)

As shown in figures 19 to 22, the increment in force or moment coefficients that results from thrust vectoring was nearly constant over the entire angle-of-attack range for each Mach number investigated. This lack of angle-of-attack dependency for thrust vectoring is similar to results presented in reference 7 and is the main reason why thrust vectoring can augment aerodynamic control at low speeds and high angles of attack. Because aerodynamic controls are typically sized for low-speed flight, they are generally oversized at higher speeds. Thrust vectoring could supplement aerodynamic controls at low speeds, reducing the required size of aerodynamic control surfaces. Ultimately, this could lead to a reduction in aircraft drag and weight (ref. 5).

One interesting performance characteristic that varied with vane deployment and angle of attack was the behavior of $C_{(D-F)}$. For configurations that produced positive (pitch down) pitch vectoring, increased vane deployment angles resulted in increased $C_{(D-F)}$. (See figs. 19 and 22.) However, for configurations that produced negative (pitch up) pitch vectoring, $C_{(D-F)}$ increased with vane deployment at angles of attack below 40° but decreased at higher angles of attack. (See figs. 20 and 21.) The reasons for this behavior become

clear when one considers the factors than influence $C_{(D-F)}$ during vectoring. In the stability-axis system, $C_{(D-F)}$ can be written as $C_{(D-F)} = C_{D,a} - C_{F,j} \cos \alpha + C_{F,N} \sin \alpha$ where $C_{F,j}$ and $C_{F,N}$ are the body-axis axial and normal components of the jet-resultant force, respectively. (See fig. 23.) A breakdown of the individual drag and thrust contributions that make up $C_{(D-F)}$ is presented in figure 24 for each vectoring configuration. When the top vanes are deployed such that positive pitch vector angles are generated, then $C_{F,N}$ increases and $C_{F,j}$ decreases (fig. 24(a)). It is obvious from the equation above that $C_{(D-F)}$ will increase throughout the angle-ofattack range. Similarly, configurations with the top and lower left vanes deployed exhibit the same trends (fig. 24(d)). However, when the bottom vanes are deployed such that negative pitch vector angles are generated, then both $C_{F,N}$ and $C_{F,j}$ decrease (fig. 24(b)). As a result, $C_{(D-F)}$ initially increases with angle of attack, but then decreases. Because the decreases in $C_{F,N}$ and $C_{F,j}$ that occur with vectoring are of similar magnitude, the vectored and nonvectored $C_{(D-F)}$ curves cross each other near $\alpha = 45^{\circ}$ (where $\sin \alpha = \cos \alpha$). Configurations with only the lower left vanes deployed exhibit similar trends (fig. 24(c)), although their magnitude is reduced by lesser resultant thrust vector angles.

Military power. The effects of thrust vectoring at military power on afterbody aerodynamic characteristics are presented in figures 25 to 28 for M = 0.30 and 0.50. The trends observed at the afterburning power setting were also apparent at the military power setting. Increased vane deflection resulted in multiaxis thrustvectoring force and moment increments that remained nearly constant with angle of attack. However, because the vanes contacted less of the exhaust flow with the nozzles at military power than at afterburning power, the magnitude of the thrust-vectoring force and moment increments generated was smaller at the military power setting. For example, at M = 0.30 and $\alpha = 0^{\circ}$, the increment in C_L and C_m generated with maximum top vane deployment at military power was approximately half of that generated at afterburning power. (Compare figs. 19(a) and 25(a).) This result was indicated earlier by the reduction in the static (M = 0) thrust-vectoring envelopes when the nozzles were changed from the afterburning power setting to the military power setting (figs. 15) and 16).

External Flow Effects on Pitching and Yawing Moments

Although the thrust-vectoring control system of the F-18 HARV is less effective at static conditions than other vectoring concepts (see refs. 5, 6, and 8), previous investigations have indicated that vectoring concepts

with deflected surfaces washed by external flow are influenced by large external flow effects (ref. 5). These external flow effects can, in some cases, substantially improve the performance of the thrust-vectoring system. The effects of external flow on pitching and yawing moments generated by the HARV thrust-vectoring control system are presented in figures 29 and 30, respectively. Each figure contains a breakdown of the individual components of the total moment increment generated by a pitch- or yaw-vectoring configuration. The data denoted by circles were obtained at wind-on, jet-off conditions with the vanes fully retracted. An increment, represented by the crosshatched regions, was obtained between vanes fully retracted and vanes deployed with the jet off. This represents an aerodynamic flap effect, that is, any moment generated aerodynamically by the deflected vanes when deployed from the fully retracted position. The data denoted by diamonds were obtained at wind-on, jet-on conditions with the vanes deployed and represent the final total moment coefficient. Any difference between this final value and the sum of aerodynamic flap and thrust contributions (symbolized by arrows and determined by static thrust measurements) represents a jet-induced interference effect caused by the interaction of the external flow with the vectored exhaust plume and any adjacent model surfaces.

External flow effects on pitching moment. As shown in figure 29, external flow effects on pitching moment typically improved the performance of the thrust-vectoring control system. Aerodynamic flap effects had little influence on C_m , especially for configurations with the top vanes $(\delta_{A,D})$ or top and lower left vanes ($\delta_{A,D}$ and $\delta_{B,E}$) deployed (figs. 29(a) and 29(d)). This result was not unexpected, since the top vanes are shielded behind the vane support fairings and spin-chute canister. Aerodynamic flap effects were slightly larger for configurations with the bottom ($\delta_{B,E}$ and $\delta_{C,E}$) or lower left $(\delta_{B,E})$ vanes deployed, and in isolated cases the impact on C_m was unfavorable (figs. 29(b) and 29(c)). For example, aerodynamic flap effects reduced nose down pitching moment generated by the bottom vanes at angles of attack from approximately 15° to 32° (fig. 29(b)). However, in all cases the aerodynamic flap effect was a small percentage (less than 5 percent) of the total pitching-moment increment generated by the deployed vanes.

In many cases, jet-induced interference effects resulted in large favorable increases (dark shading) in pitching moment generated by the thrust-vectoring system. These jet-induced interference effects may result from external flow altering the angle of the jet plume,

changing the pressure distribution on the back surface of the vanes or inducing pressures on the afterbody (ref. 5). Favorable interference effects were largest for configurations with the top vanes ($\delta_{A,D}$) or top and lower left vanes ($\delta_{A,D}$ and $\delta_{B,E}$) deployed (figs. 29(a) and 29(d)). For example, favorable interference accounted for as much as 40 percent of the nose down pitching-moment coefficient generated by the top vanes at M = 0.30 and 0.50 (fig. 29(a)). Favorable jet-induced interference effects also existed with the lower left ($\delta_{B,E}$) or bottom vanes deployed ($\delta_{B,E}$ and $\delta_{C,F}$); however, their magnitude was much smaller than in cases with the top vanes deployed. (Compare figs. 29(b) and 29(c) with 29(a) and 29(d).)

External flow effects on yawing moment. As shown in figure 30, external flow effects on yawing moment had both favorable and adverse components that influenced the yaw-vectoring performance of the thrustvectoring control system. The aerodynamic flap effect resulting from deploying the lower left $(\delta_{B,E})$ or top and lower left ($\delta_{A,D}$ and $\delta_{B,E}$) vanes resulted in small favorable increases in C_n throughout the angle-of-attack range, while jet-induced interference effects varied with vane deployment, Mach number, and angle of attack (fig. 30). With the lower left vanes deployed ($\delta_{R,F}$) at M = 0.50, jet-induced interference effects resulted in small favorable increases in yawing moment across the entire angle-of-attack range investigated (fig. 30(a)). However, at M = 0.30 jet-induced interference effects on the lower left vanes reduced C_n (light shading) slightly at angles of attack between 20° and 35°. Favorable interference effects existed elsewhere and in some cases, such as at $\alpha = 70^{\circ}$, favorable interference accounted for approximately 15 percent of the total yawing moment increment generated by the deployed vanes (fig. 30(a)).

When both the top and lower left ($\delta_{A,D}$ and $\delta_{B,E}$) vanes on each engine were deployed at M = 0.50(fig. 30(b)), jet-induced interference effects had little influence on yawing moment. However, at M = 0.30 jetinduced interference effects were adverse at angles of attack less than approximately 35° and favorable at higher angles of attack. As shown in figure 30(b), adverse interference effects were largest at lower angles of attack and typically decreased with increasing angle of attack. Adverse interference decreased the yawing moment increment generated by the deployed vanes by as much as 10 percent. At $\alpha > 35^{\circ}$, favorable jet-induced interference effects typically increased with increasing angle of attack. At $\alpha = 70^{\circ}$, favorable interference increased the yawing moment increment generated by the deployed vanes by approximately 25 percent.

Comparison of Aerodynamic and Propulsive Control Capability

An assessment of the aerodynamic and propulsive control capability of the F-18 HARV is presented in figure 31. The comparisons are made at M = 0.30 and an altitude of 20000 ft, which corresponds to a typical highalpha air combat maneuvering condition. Longitudinal and directional control-power characteristics are presented as pitch acceleration \dot{q} and yaw acceleration \dot{r} , respectively. Aerodynamic control power generated from the stabilators and rudders was obtained from an aerodynamic database outlined in reference 20. Control power from thrust vectoring was calculated by using installed F-18 HARV engine data (table 40) obtained from an engine thrust model outlined in reference 20 and correcting thrust contributions from the wind-tunnel model. Control power from thrust vectoring represents an increment between having the vanes deployed and having the vanes fully retracted, with the jet operating.

Longitudinal control. A comparison of pitch acceleration available from thrust vectoring versus stabilator deflections is presented in figure 31(a). Control power from thrust vectoring is evaluated at afterburning power and NPR = 4.25 at the vane deployments noted. As shown in figure 31(a), positive pitch acceleration available from the stabilators is relatively constant up to angles of attack of 35° and then decreases. Positive pitch acceleration from thrust vectoring adds a constant increment in \dot{q} across the angle-of-attack range, substantially increasing positive pitch authority. Negative pitch acceleration available from the stabilators slowly decreases with increasing angle of attack from 10° to 50° and then increases again. However, negative pitch acceleration from thrust vectoring is constant, providing an increment across the angle-of-attack range that more than doubles the negative pitch authority at angles of attack near 50°. As indicated in reference 3, the ability to rapidly pitch down is critical in high-alpha maneuvers so that highspeed, low-alpha flight can be resumed.

Directional control. A comparison of yaw acceleration available from thrust vectoring versus rudder deflections is presented in figure 31(b). Yaw acceleration available from thrust vectoring shows no degradation with increasing angle of attack and is larger in magnitude than that available from the rudders across the entire angle-of-attack range. The ability to rapidly roll the aircraft about the velocity vector is critical in high-alpha maneuvers in order to point the aircraft for target acquisition or point the normal force vector for tight radius turns. At high angles of attack, a roll about the velocity vector requires controls that generate large body axis yawing moments (ref. 3). Rudders are ineffective at high

angles of attack because they are engulfed in the wake of the aircraft. As indicated in figure 31(b), this is not a problem for thrust vectoring, as substantial control authority is maintained across the entire angle-of-attack range.

Conclusions

An investigation was conducted in the Langley 16-Foot Transonic Tunnel to determine the multiaxis thrust-vectoring characteristics of the F-18 High-Alpha Research Vehicle (HARV). A wingtip-supported, partially metric, 0.10-scale jet-effects model of an F-18 prototype aircraft was modified with hardware to simulate the thrust-vectoring control system of the HARV. The model was tested for static and aeropropulsive performance at free-stream Mach numbers ranging from 0.30 to 0.70, at angles of attack from 0° to 70°, and at nozzle pressure ratios from 1.0 to approximately 5.0. An extensive matrix of vane deflection angles was tested for two nozzle configurations: an afterburning power nozzle and a military power nozzle. The results of this investigation indicate the following conclusions:

- 1. The three-vane thrust-vectoring control system of the F-18 HARV can generate useful levels of multiaxis thrust vectoring.
- 2. During vectored thrust operation, resultant thrust vector angles were always less than the corresponding geometric vane deflection angle and were accompanied by large thrust losses.
- 3. The afterburning power setting typically provided higher resultant thrust vector angles than the military power setting. Increased flow turning at afterburning power is attributable to the larger exhaust plume at that setting.
- 4. Thrust-vectoring requirements for the F-18 HARV fall within the afterburning power envelopes, but are typically outside the military power envelopes. This indicates that the afterburning power setting is necessary to obtain the desired multiaxis vector angles for the HARV design requirements.
- 5. The increments in force or moment coefficients that result from thrust vectoring were generally constant over the entire angle-of-attack range for each Mach number investigated.
- 6. The thrust-vectoring control system experiences large external flow effects that, in some cases, substantially improve performance of the thrust-vectoring control system.
- 7. Comparisons of the aerodynamic and propulsive control capabilities of the HARV configuration indicate that substantial gains in controllability are provided by

the multiaxis thrust-vectoring control system, especially at high angles of attack.

NASA Langley Research Center Hampton, VA 23681-0001 October 2, 1995

References

- Herrick, Paul W.: Propulsion Influences on Air Combat. AIAA-85-1457, July 1985.
- Costes, Philippe: Investigation of Thrust Vectoring and Poststall Capability in Air Combat. AIAA-88-4160, Aug. 1988.
- Nguyen, Luat T.; and Gilbert, William P.: Impact of Emerging Technologies on Future Combat Aircraft Agility. AIAA-90-1304, May 1990.
- Berrier, B. L.; and Re, R. J.: A Review of Thrust-Vectoring Schemes for Fighter Aircraft. AIAA-78-1023, July 1978.
- Berrier, Bobby L.: Results From NASA Langley Experimental Studies of Multiaxis Thrust Vectoring Nozzles. SAE Tech. Paper Ser. 881481, Oct. 1988.
- Mason, M. L.; and Berrier, B. L.: Static Investigation of Several Yaw Vectoring Concepts on Nonaxisymmetric Nozzles. NASA TP-2432, 1985.
- Capone, Francis J.; Mason, Mary L.; and Leavitt, Laurence D.: An Experimental Investigation of Thrust Vectoring Two-Dimensional Convergent-Divergent Nozzles Installed in a Twin-Engine Fighter Model at High Angles of Attack. NASA TM-4155, 1990.
- Capone, Francis J.; Mason, Mary L.; and Carson, George T., Jr.: Aeropropulsive Characteristics of Canted Twin Pitch-Vectoring Nozzles at Mach 0.20 to 1.20. NASA TP-3060, 1991.
- Herrick, Paul W.: Fighter Aircraft Affordability, Survivability, and Effectiveness Through Multi-Function Nozzles. AIAA-89-2815, July 1989.
- Nelson, B. D.; and Nicolai, L. M.: Application of Multi-Function Nozzles to Advanced Fighters. AIAA-81-2618, Dec. 1981.
- Bitten, R.; and Selmon, J.: Operational Benefits of Thrust Vector Control (TVC). High-Angle-of-Attack Technology, Volume I, Joseph R. Chambers, William P. Gilbert, and Luat T. Nguyen, eds., NASA CP-3149, Part 2, 1992, pp. 587-601.

- Regenie, Victoria; Gatlin, Donald; Kempel, Robert; and Matheny, Neil: The F-18 High Alpha Research Vehicle: A High Angle-of-Attack Testbed Aircraft. NASA TM-104253, 1992.
- Gilbert, William P.; Nguyen, Luat T.; and Gera, Joseph: Control Research in the NASA High-Alpha Technology Program. Aerodynamics of Combat Aircraft Controls and of Ground Effects, AGARD-CP-465, Apr. 1990, pp. 3-1-3-18.
- Mercer, Charles E.; Berrier, Bobby L.; Capone, Francis J.; and Grayston, Alan M.: Data Reduction Formulas for the 16-Foot Transonic Tunnel: NASA Langley Research Center, Revision 2. NASA TM-107646, 1992. (Supersedes NASA TM-86319.)
- A User's Guide to the Langley 16-Foot Transonic Tunnel Complex, Revision 1. NASA TM-102750, 1991. (Supersedes NASA TM-83186.)
- Capone, Francis J.; and Berrier, Bobby L.: Investigation of Axisymmetric and Nonaxisymmetric Nozzles Installed on a 0.10-Scale F-18 Prototype Airplane Model. NASA TP-1638, 1980.
- 17. Berrier, Bobby L.; and Mason, Mary L.: Static Performance of an Axisymmetric Nozzle With Post-exit Vanes for Multiaxis Thrust Vectoring. NASA TP-2800, 1988.
- Mason, Mary L.; Capone, Francis J.; and Asbury, Scott C.: A Static Investigation of the Thrust Vectoring System of the F/A-18 High-Alpha Research Vehicle. NASA TM-4359, 1992.
- 19. Bowers, Albion H.; Noffz, Gregory K.; Grafton, Sue B.; Mason, Mary L.; and Peron, Lee R.: Multiaxis Thrust Vectoring Using Axisymmetric Nozzles and Postexit Vanes on an F/A-18 Configuration Vehicle. NASA TM-101741, 1991.
- Buttrill, Carey S.; Arbuckle, P. Douglas; and Hoffler, Keith D.: Simulation Model of a Twin-Tail, High Performance Airplane. NASA TM-107601, 1992.
- Berrier, B. L.; Leavitt, L. D.; and Bangert, L.: Operating Characteristics of the Multiple Critical Venturi System and Secondary Calibration Nozzles Used for Weight-Flow Measurements in the Langley 16-Foot Transonic Tunnel. NASA TM-86405, 1985.
- 22. Gilbert, William P.; and Gatlin, Donald H.: Review of the NASA High-Alpha Technology Program. *High-Angle-of-Attack Technology*, Volume I, Joseph R. Chambers, William P. Gilbert, and Luat T. Nguyen, eds., NASA CP-3149, Part 1, 1992, pp. 23-59.

Table 1. Index of Data Tables

(a) Afterburning power

Table	δ _{A,D} , deg	$\delta_{B,E}$, deg	δ _{C,F} , deg	М							
		Unvectored									
2	-10	-10	-10	0, 0.3, 0.5, 0.7							
3	0	0	0	0, 0.3, 0.5, 0.7							
4	5	5	5	0, 0.3, 0.5, 0.7							
		Pitch down		•							
5	10	-10	-10	0, 0.3, 0.5, 0.7							
6	15	-10	-10	0, 0.3, 0.5, 0.7							
7	20	-10	-10	0, 0.3, 0.5, 0.7							
8	25	-10	-10	0, 0.3, 0.5							
		Pitch up									
9	-10	10	10	0, 0.3, 0.5, 0.7							
10	-10	15	15	0, 0.3							
11	-10	20	20	0, 0.3, 0.5, 0.7							
12	-10	25, 20	20, 25	0, 0.3, 0.5							
		Yaw right									
13	-10	15, 10	-10	0, 0.3, 0.5, 0.7							
14	-10	15	-10	0, 0.3							
15	-10	20	-10	0, 0.3							
16	-10	25	-10	0, 0.3, 0.5							
	Pitc	h down and yaw r	ight								
17	15	15	-10	0, 0.3							
18	20	20	-10	0, 0.3, 0.5							
19	25	25	-10	0, 0.3, 0.5							
20	15	15, 10	-10	0, 0.3, 0.5, 0.7							
21	15	25	-10	0, 0.3, 0.5							
22	25	15, 10	-10	0, 0.3, 0.5							
23	25	15	-10	0, 0.3, 0.5							

Table 1. Concluded (b) Military power

Table	$\delta_{A,D}$, deg	$\delta_{\mathrm{B,E}}$, deg	δ _{C,F} , deg	М
		Unvectored		
24	-10	-10	-10	0, 0.3, 0.5
25	10	10	10	0, 0.3, 0.5
		Pitch down		
26	15	-10	-10	0, 0.3, 0.5
27	20	-10	-10	0, 0.3, 0.5
28	25	-10	-10	0, 0.3, 0.5
		Pitch up		
29	-10	10	10	0, 0.3, 0.5
30	-10	15	15	0, 0.3
31	-10	20	20	0, 0.3, 0.5
32	-10	25, 20	20, 25	0, 0.3, 0.5
	Pit	ch up and yaw rig	ght	
33	-10	15	-10	0, 0.3, 0.5
34	-10	25	-10	0, 0.3, 0.5
35	-10	25	15	0, 0.3, 0.5
	Pitc	h down and yaw i	right	
36	15	15	-10	0, 0.3, 0.5
37	25	25	-10	0, 0.3, 0.5
38	15	25	-10	0, 0.3, 0.5
39	25	15	-10	0, 0.3, 0.5

Table 2. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \delta_{B,E} = -10^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

	C _{1,a} -0.0023 -0.0010 -0.0010 -0.0013 0.00013 0.00013 0.00117 0.0025 0.0026 0.0027 0.0029 0.0029 0.0029 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020 0.0020	1
	C _{n,a} 0.0000 0.0000 0.00003 0.0003	
<i>C_l</i> -0.0001 -0.0001 -0.0001	$C_{Y,a}$ 0.0010 0.0010 0.00115 0.00015 0.00016 0.00016 0.00017 0.00018 0.00029 0.00029 0.00029 0.00039 0.00039 0.00039 0.00039 0.00039 0.00039 0.00039 0.00039 0.00039	1
C _n -0.0001 -0.0002	C _{m,a} 0.0880 0.08837 0.08837 0.00857 0.00857 0.00857 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0242 0.0352 0.0352 0.0352 0.0353 0.03	
$C_{F,S}$ 0.0002 0.0005 0.0009	$C_{D,a}$ 0.0154 0.0154 0.0187 0.0253 0.0264 0.0147 0.0176 0.0217 0.0208 0.0648 0.0648 0.0649 0.0648 0.0649 0.0672 0.2722 0.2722 0.2722 0.2986 0.0096 0.0096 0.0096 0.0096 0.00973 0.00973 0.00946 0.1161 0.1509 0.2329	
C _m -0.0004 -0.0009 -0.0013 teristics	$C_{L,a}$ -0.0554 -0.0554 -0.0521 -0.0456 0.0349 0.0207 0.0089 0.1111 0.2552 0.1205 0.1111 0.2552 0.20111 0.1987 0.2057 0.0073 0.0073 0.0116 0.0116 0.0116 0.0116 0.0348 0.0662 0.1184 0.1184 0.1184 0.10116 0.0348 0.0662 0.1184 0.0116 0.0348 0.0662 0.0116 0.0348 0.0662 0.0116 0.05369 0.0530	
δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} 0.74 -0.0173 0.0006 -0.000 0.047 0.0013 -0.000 1.03 -0.00479 0.0018 -0.000 (b) Aeropropulsive performance characteristics	C ₁ -0.0023 -0.0024 -0.0024 -0.0003 -0.0003 -0.0001 -0.0003 -0.0012 -0.0013 -0.0024 -0.0012 -0.0012 -0.0013 -0.0024 -0.0014 -0.0017 -0.0024 -0.0017 -0.0024 -0.0017 -0.0024 -0.0017 -0.0024 -0.0017	
C_{Fj} -0.0173 -0.0328 -0.0479	C _n 0.0000 0.0000 0.0000 0.0003 0.00	
δ _y , deg 0.74 0.94 1.03 (b) Aeroprop	C_{P} 0.0010 0.0052 0.0083 0.0141 0.0143 0.0144 0.0143 0.0141 0.0185 0.0017 0.0017 0.0027	
δ _p . deg 1.99 2.33 2.17	C _m 0.0880 0.0769 0.0769 0.0566 0.0566 0.0615 0.0615 0.0532 0.0523	
F _J F _i 0.9901 0.9895 0.9819	C _(D-F) 0.0154 0.2595 0.4937 0.7866 0.0147 0.2491 0.4709 0.7556 0.0554 0.0883 0.0055 0.0095 0.0095 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0096 0.0097	
F _J F _i 0.9908 0.9905 0.9827	C_L C_L 0.0554 0.0349 0.0154 0.0349 0.1021 0.1024 0.1021 0.1624 0.2406 0.1223 0.2406 0.1223 0.2406 0.1223 0.2406 0.1987 0.9030 0.0582 0.0184 0.0582 0.0116 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0184 0.0253 0.0116 0.0253 0.0116	
NPR 1.99 3.00 3.99	N N N N N N N N N N N N N N N N N N N	
	α, deg -0.02 -0.03	
	0.300 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299	

ζ,	į	0.0013	0.0038	0.0041	0.0051	-0.0009	-0.0007	-0.0004	0.0010	0.0020	0.0017	0.0023	0.0019	0.0020	0.0030	0.0033	0.0028	0.0030	0.0021	0.0027	0.0030	0.0040	0.0026	0.0026	-0.0005	-0.0003	0.0003	40004	0.001	0.0020	0.0019	-0.0001	0.0005	0.0008	0.0009	-0.0005	-0.0005	-0.0002	0.0019	0.0008	0.0001	0.0003	-0.0006	0.000	7.000
"	3.	0.0001	0.0013	0.0010	0.004	-0.0001	-0.0004	90000	-0.0009	-0.0025	-0.0017	-0.0037	-0.0032	0.0046	0.0005	-0.0013	0.0008	0.0001	0.0030	0.0046	0.0034	0.0030	0.0007	-0.0015	0.0010	0.0009	0.000	0.0008	0.0030	-0.0033	-0.0034	-0.0010	-0.0010	-0.0010	-0.0006	0.0003	0.0003	-0.0001	-0.0032	-0.0016	-0.0010	-0.0034	0.0013	0.0008	0.000
Ĉ	į	90000	0.0039	0.0036	0.0153	0.0008	0.0020	0.0027	0.0030	0.0076	0.0048	0.0110	0.0086	-0.0180	-0.0021	0.0020	-0.0050	-0.0022	-0.0121	-0.0162	-0.0118	-0.0098	-0.0044	0.0014	-0.0027	-0.0026	-0.0020	-0.0025	0.0091	0.009	0.0103	0.0018	0.0019	0.0019	0.0007	-0.0007	-0.0007	0.0004	0.0098	0.0044	0.0019	0.0100	-0.0036	-0.0022	4700.0
<u>"</u> "	******	-0.5753	70650	-0.6191	-0.7240	0.0813	0.0307	-0.0197	-0.0309	-0.1297	-0.2139	-0.3040	-0.3484	-0.5489	-0.4067	-0.4528	-0.4845	-0.5131	-0.5492	-0.5857	-0.6155	-0.6334	-0.6502	0.6499	0.1024	0.0984	0.0974	0.0932	0020	9690	-0.0698	-0.2484	-0.2552	-0.2545	-0.2575	0.1029	0.0499	60000	-0.0685	-0.1628	-0.2471	-0.3292	0.0934	0.0399	5.0.0
$C_{D,a}$	1	0.3208	0.3002	0.3908	0.4936	0.0253	0.0225	0.0246	0.0182	0.0311	0.0605	0.0978	0.1190	0.2686	0.1547	0.1867	0.2106	0.2336	0.2677	0.3133	0.3573	0.3922	0.4227	0.4339	0.0185	0.0210	0.0241	0.0261	0.0109	0.0210	0.0226	0.0725	0.0754	0.0770	0.0790	0.0167	0.0148	0.0154	0.0169	0.0382	0.0721	0.1129	0.0245	0.0217	0.0419
<i>C</i> , ,	1	0.2509	0.2282	0.1776	0.1571	-0.0511	-0.0177	0.0104	-0.0056	0.0532	0.1066	0.1550	0.1784	0.2571	0.2093	0.2264	0.2366	0.2454	0.2547	0.2499	0.2348	0.2036	0.1701	0.1393	-0.0691	-0.0663	0.0657	0.0640	0.0310	0.0290	0.0283	0.1455	0.1487	0.1463	0.1471	-0.0696	-0.0317	-0.0010	0.0310	0.0910	0.1444	0.1882	-0.0625	0.0247	1
	•	0.0013	0.0038	0.0041	0.0051	-0.0020	-0.0018	-0.0016	-0.0002	0.0009	9000.0	0.0011	0.0008	0.0017	0.0027	0.0030	0.0025	0.0027	0.0018	0.0024	0.0028	0.0037	0.0023	0.0023	-0.0005	-0.0007	0000	0.000	0.001	0.0017	0.0015	-0.0001	0.0002	0.0004	0.0005	-0.0005	-0.0005	-0.0002	0.0019	0.0008	0.0001	0.0003	-0.0010	0.0010	2000
1 able 2. Col	: ;	0.0001	2007	0.00	0.0044	-0.0037	-0.0041	-0.0043	-0.0045	-0.0062	-0.0053	-0.0075	-0.0070	-0.0005	-0.0045	0.0064	-0.0043	-0.0050	-0.0021	-0.0005	-0.0016	-0.0021	0.004	-0.0066	0.0010	0.0003	0.000	0.0003	0.003	-0.0040	-0.0047	-0.0010	-0.0013	-0.0017	-0.0019	0.0003	0.0003	-0.0001	-0.0032	-0.0016	-0.0010	-0.0034	-0.0001	0.000	3
Č.	•	90000	0.0056	0.0036	0.0153	0.0156	0.0169	0.0176	0.0180	0.0226	0.0198	0.0260	0.0237	-0.0019	0.0137	0.0179	0.0109	0.0137	0.0039	-0.0001	0.0040	0.0063	0.0114	0.0175	-0.0027	-0.0012	0.0011	0.0029	0.000	0.0130	0.0157	0.0018	0.0033	0.0049	0.0060	-0.0007	-0.0007	0.0004	0.0098	0.004	0.0019	0.0100	0.0017	0.0032	0.0023
<u>ٿ</u>	•	-0.5753	-0.3902	0.0191	-0.7240	0.0602	0.0097	-0.0408	-0.0521	-0.1510	-0.2352	-0.3252	-0.3698	-0.5489	-0.4068	-0.4528	-0.4845	-0.5131	-0.5492	-0.5857	-0.6156	-0.6334	-0.6502	-0.6499	0.1024	0.0959	0.0920	0.08/0	-0.057	-0.0750	-0.0774	-0.2484	-0.2577	-0.2599	-0.2651	0.1029	0.0499	-0.0009	-0.0685	-0.1628	-0.2471	-0.3292	0.0858	0.0323	0.0100
C_{D-E}		0.3208	0.3002	0.3508	0.4936	-0.7899	-0.7898	-0.7775	-0.7698	-0.7333	-0.6748	0009.0	-0.5641	-0.3002	-0.4946	-0.4398	-0.3987	-0.3588	-0.2984	-0.2054	-0.0950	08000	0.0915	0.1422	0.0185	0.080/	0.1941	0.2087	0.0103	-0.1586	-0.2608	0.0725	-0.0161	-0.0889	-0.1847	0.0167	0.0148	0.0154	0.0169	0.0382	0.0721	0.1129	-0.2688	0.2689	0.2020
5	1	0.2509	0.2282	0.1776	0.1571	-0.0209	0.0838	0.1831	0.2374	0.3636	0.4827	0.5922	0.6475	0.8355	0.6774	0.7246	0.7562	0.7885	0.8301	0.8781	0.8918	0.9106	0.8958	0.8976	0.0691	0.0627	0.0381	0.0320	0.0508	0.0848	0.1153	0.1455	0.1951	0.2315	0.2815	-0.0696	-0.0317	-0.0010	0.0310	0.0910	0.1444	0.1882	-0.0512	0.0119	0.000.0
NPR	;	0.98	76.0	0.97	0.97	4.23	4.26	4.26	4.26	4.26	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	<u>3</u> , 6	7.07	3.5	5.60	8 -	3.00	4.27	0.97	2.02	2.98	4.25	0.99	0.9	0.9	0.9	0.98	0.98	0.97	5.5	4.24	1
α, deg	' '	50.02	10.00	65 02	68.56	-0.03	4.98	10.01	15.00	19.96	24.95	29.92	32.34	44.97	35.30	37.99	39.36	42.01	44.97	49.96	54.96	59.98	76.5	68.46	0.0	0.07	0.01	70.0	14 95	14.95	14.93	24.85	24.87	24.83	24.87	0.02	2.00	10.00	14.94	19.96	24.83	29.81	0.0	20.0	
M		0.299	2000	0.298	0.297	0.300	0.301	0.301	0.300	0.300	0.299	0.300	0.299	0.299	0.301	0.301	0.301	0.301	0.300	0.298	0.302	0.299	0.302	0.299	0.501	0.501	0.500	0.500	0.500	0.501	0.501	0.501	0.500	0.500	0.500	0.499	0.502	0.500	0.499	0.499	0.498	0.499	0.502	205.0	

	$C_{l,a}$	0.0017	0.0010	0.0007	0.0003	0.0003	0.0001	0.0001	0.000	0.0011	0.0011	0.0010	0.0011	0.0001	-0.0001	-0.0001	0.0007	0.0000	-0.0002	-0.0001	0.0008	0.0012
	$C_{n,a}$	-0.0026	-0.0013	-0.0003	0.0012	0.0014	0.0015	0.0015	-0.0007	-0.0006	-0.0006	-0.0004	-0.0006	0.0010	0.0008	0.0005	-0.0012	0.0011	0.0007	9000.0	-0.0005	-0.0010
	$C_{Y,a}$	0.0078	0.0036	-0.0003	-0.0037	-0.0043	-0.0048	-0.0049	0.0016	0.0013	0.0010	0.0004	0.0012	-0.0028	-0.0027	-0.0020	0.0031	-0.0034	-0.0023	-0.0024	0.0009	0.0021
	$C_{m,a}$	-0.0719	-0.1661	-0.2569	0.1103	0.1104	0.1090	0.1094	-0.0866	-0.0862	-0.0860	-0.0865	-0.0877	0.1132	0.0639	0.0100	-0.1727	0.1073	0.0543	0900.0	-0.0888	-0.1759
	$C_{D,a}$	0.0223	0.0436	0.0787	0.0206	0.0229	0.0236	0.0243	0.0202	0.0206	0.0215	0.0227	0.0224	0.0193	0.0155	0.0133	0.0408	0.0227	0.0192	0.0190	0.0233	0.0449
	$C_{L,a}$	0.0302	0.0902	0.1470	-0.0773	-0.0780	6920.0-	-0.0775	0.0449	0.0434	0.0421	0.0416	0.0426	-0.0790	-0.0437	-0.0103	9660'0	-0.0744	-0.0361	-0.0077	0.0451	0.0997
luded	C_I	0.0012	9000:0	0.0003	0.0001	0.0001	-0.0001	-0.0001	0.0009	0.0010	0.0010	0.0008	0.0009	0.0001	-0.0001	-0.0001	0.0007	-0.0002	-0.0003	-0.0003	9000:0	0.0010
Fable 2. Concluded	<i>C</i> "	-0.0039	-0.0027	-0.0017	0.0010	0.0010	0.0008	9000.0	-0.0007	-0.0008	-0.0010	-0.0011	-0.0016	0.0010	0.0008	0.0005	-0.0012	0.0004	0.0000	-0.0001	-0.0012	-0.0017
	C_{Y}	0.0132	0.0091	0.0051	-0.0030	-0.0027	-0.0020	-0.0014	0.0016	0.0020	0.0026	0.0031	0.0047	-0.0028	-0.0027	-0.0020	0.0031	-0.0007	0.0004	0.0004	0.0036	0.0049
	<i>C</i> ,	-0.0795	-0.1737	-0.2646	0.1091	0.1076	0.1051	0.1047	-0.0866	-0.0874	-0.0887	-0.0904	-0.0924	0.1132	0.0639	0.0100	-0.1727	0.1033	0.0504	0.0021	-0.0927	-0.1799
	$C_{(D-F)}$	-0.2593	-0.2334	-0.1887	-0.0300	-0.0750	-0.1270	-0.1614	0.0202	-0.0279	-0.0703	-0.1223	-0.1574	0.0193	0.0155	0.0133	0.0408	-0.1299	-0.1301	-0.1283	-0.1216	-0.0973
	C_L	0.1167	0.2024	0.2830	-0.0755	-0.0739	-0.0711	-0.0705	0.0449	0.0582	0.0705	0.0860	0.0974	-0.0790	-0.0437	-0.0103	0.0996	-0.0684	-0.0172	0.0240	0.0895	0.1571
	NPR	4.24	4.28	4.28	1.99	3.05	4.25	5.03	0.98	1.99	3.01	4.27	5.07	86.0	0.98	0.99	0.97	4.28	4.26	4.26	4.26	4.29
	x, deg	4.93	16.61	:4.82	0.08	0.11	0.07	0.07	4.94	4.91	4.87	4.89	4.87	0.10	5.03	10.02	9.85	60.0	2.08	0.02	4.90	19.83
	<i>М</i>	500		•																		

Table 3. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\delta_{A,D} = 0^{\circ}; \delta_{B,E} = 0^{\circ}; \delta_{C,F} = 0^{\circ}$

		C _{1,a}	0.0023 0.0024
		C _{n,a} 0.0024 0.0011 0.0011 0.0003 0.0003 0.0003 0.0003 0.0001 0.0003 0.	0.0013 -0.0027 -0.0022
	C _l 0.0000 -0.0001 -0.0001	C _{7,a}	0.0079
	C _n 0.0000 -0.0001 -0.0002	C _{m,a} 0.0979 0.1002 0.0968 0.0926 0.0926 0.0934 0.0272 0.01036 0.0974 0.0931 0.0490 0.0490 0.0490 0.0490 0.0490 0.0490 0.0426 0.0919 0.0426 0.0919 0.0426 0.0919 0.0426 0.0919 0.0426 0.0919 0.0426 0.0919 0.0426 0.0919 0.0929 0.01020	0.0976 -0.0640 -0.0584
	C _{F,S} 0.0001 0.0004 0.0007	C _{D,d} 0.0210 0.0184 0.0242 0.0242 0.0142 0.0142 0.0153 0.0144 0.0550 0.0527 0.0171 0.01011 0.0171 0.0288 0.0172 0.0172 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0288 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289 0.0289	0.0159 0.0159 0.0163
ristics	C _m -0.0006 -0.0010 -0.0015 eristics	$C_{L,a}$ $C_{L,a}$ $C_{0.0692}$ $C_{0.0637}$ $C_{0.0637}$ $C_{0.0637}$ $C_{0.0637}$ $C_{0.0938}$ $C_{0.0939}$	0.0257 0.0257 0.0209
(a) Static $(M = 0)$ performance characteristics	C _{F,N} 0.0008 0.0013 0.0018 nance charact	C ₁ C ₂ C ₃ C ₄ C ₅ C ₆ C ₆ C ₇	-0.0006 0.0023 0.0019
= 0) perform	C _{F,j} -0.0175 -0.0327 -0.0479 ulsive perform	C, C	0.0003 -0.0027 -0.0022
(a) Static (M	δ_{y} , deg C_{Fj} $C_{F,N}$ C_m 0.21 -0.0175 0.0008 -0.000 0.62 -0.0327 0.0013 -0.001 0.85 -0.0479 0.0018 -0.001	Cy 0.0075 0.0014 0.0081 0.0081 0.0082 0.0064 0.00664 0.00666 0.006664 0.006666 0.0066	0.0079 0.0068
	δ_p , deg 2.62 2.20	C _m 0.0979 0.0897 0.0897 0.0816 0.0874 0.0674 0.0445 0.0445 0.0445 0.0445 0.0445 0.0453 0.0974 0.0450	-0.0640 -0.0620
	$F_j F_i$ 0.9831 0.9919 0.9789	$C_{(D-F)}$ 0.0210 0.0210 0.02799 0.01929 0.0142 0.02499 0.0142 0.0550 0.01947 0.01011 0.01011 0.00131 0.00522 0.00876	-0.2708 0.0159 -0.0784
	$F_j F_i$ 0.9842 0.9927 0.9797	C_L	0.0343 0.0257 0.0509
	NPR 2.00 3.01 4.01	N N N N N N N N N N N N N N N N N N N	7.70 7.00 7.00
		α, deg 0.17 0.17 0.07 0.07 0.07 14.99 14.99 14.99 14.99 14.99 14.99 16.02 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.93 19.94 19.99 19.77 19.	0.51 14.98 14.95
		A 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.299 0.299 0.300 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.209 0.300 0.20	0.301 0.499 0.501

C _{1,a} 0.0023 0.0022 0.00022 0.00022 0.00022 0.00022 0.00023 0.00033	-
C. a. b.	•
C _{Y,a} 0.0004 0.0004 0.00038 0.0004 0.00039 0.0004 0.00039 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004 0.00039 0.0004	•
C _{m,a} -0.0566 -0.0574 -0.2451 -0.2452 -0.2432 -0.2432 -0.2433 -0.0634 -0.1514 -0.1514 -0.1334 -0.1514 -0.13132 -0.0985 -0.0985 -0.0985 -0.1119 -0.0819 -0.0849 -0.01166 -0.0787 -0.0849 -0.01152 -0.0819	>
$C_{D,a}$ 0.0158 0.0172 0.0692 0.0711 0.0709 0.0737 0.0173 0.0147 0.0143 0.0143 0.0143 0.0144 0.0143 0.0182 0.0182 0.0182 0.0189 0.0189 0.0199 0.0199 0.0197 0.0191 0.0197 0.0197 0.0195 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197 0.0197	
$C_{L,a}$ 0.0186 0.0181 0.1378 0.01870 0.1378 0.1401 0.1377 0.0379 0.0091 0.0244 0.0803 0.1331 0.1767 0.0185 0.0099 0.0145 0.0089 0.0145 0.0089 0.0145 0.0089 0.0145 0.0089 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999 0.00999	
C ₁ 0.0018 0.00017 0.00023 0.00023 0.00033	
C _n	>
Cy 0.0092 0.0110 0.00110 0.00013 0.00013 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00014 0.00017 0.00017 0.00017 0.00019)
C _m	
C_{D-F} C_{D)
C_L 0.0736 0.1043 0.1378 0.1378 0.2233 0.2722 0.02722 0.0244 0.0803 0.1331 0.1767 0.0540 0.00540 0.0059 0.00537 0.00537 0.00659 0.00537 0.00659 0.00537 0.00659 0.00537 0.00659	
NPR 3.3.01 3.011 3.011 1.0000 1.0000) -
α, deg 14.92 14.87 24.88 24.95 24.88 24.88 24.89 10.09 10.09 14.97 19.54 24.32 29.13 0.15 0.19 14.91 14.92 14.93 0.08 5.07 10.00 10	
0.500 0.499 0.499 0.499 0.499 0.504 0.501 0.501 0.499 0.501 0.501 0.499 0.501 0.699 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.699 0.700 0.700 0.699 0.700 0.699 0.700 0.700 0.699 0.700 0.699 0.700 0.700 0.699 0.700	``

Table 4. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 5^{\circ}; \delta_{B,E} = 5^{\circ}; \delta_{C,F} = 5^{\circ}\right]$

						'	'	'	'																'	1											
					$C_{n,a}$	0.0023	0.0015	0.0005	0.0007	0.0025	0.0027	0.0010	-0.0008	-0.0010	-0.0015	-0.0003	-0.0003	0.0009	0.0013	0.0035	-0.0009	0.0012	0.0023	0.0043	0.0012	0.0015	0.0008	0.0030	-0.0010	-0.0027	-0.0022	-0.0018	-0.0030	-0.0018	-0.0034	-0.0017	0.0001
	7	-0.0001	-0.0001		$C_{Y,a}$	-0.0077	-0.0051	-0.0012	0.0018	0.00/8	2000	0.0027	0.0008	0.0013	0.0030	-0.0004	-0.0012	-0.0068	-0.0089	-0.0168	0.0028	-0.0059	-0.0101	-0.0172	-0.0041	75000	0.0028	0.0037	0.0017	0.0064	0.0035	0.0045	0.0066	0.0034	0.0093	0.0037	-0.0021
	۲,	0.0000	-0.0002		$C_{m,a}$	0.0998	0.1042	0.0941	0.0905	0.03/3	0.000	-0.0224	-0.2074	-0.2036	-0.2002	-0.2034	-0.5160	-0.5327	-0.5350	-0.5383	-0.6144	-0.6124	-0.6170	-0.6266	0.1003	0.0400	0.000	-0.0348	-0.2035	-0.2881	-0.3293	-0.3891	-0.4243	-0.4513	-0.4847	-0.5146	-0.5674
	$C_{F,S}$	0.0002	0.0007		$C_{D,a}$	0.0244	0.0245	0.0322	0.0353	0.0208	0.023	0.0275	0.0596	0.0639	0.0667	0.0697	0.2643	0.2685	0.2682	0.2674	0.3930	0.3878	0.3890	0.3928	0.0171	0.0173	0.0192	0.0204	0.0605	0960.0	0.1188	0.1463	0.1775	0.2013	0.2294	0.2614	0.3180
eristics	<i>C</i> ,	-0.0008	-0.0019	teristics	$C_{L,a}$	-0.0684	-0.0730	-0.0616	0.0389	0.0247	0.0002	-0.0142	0.1077	0.0988	0.0941	0.0950	0.2508	0.2549	0.2503	0.2492	0.1973	0.1986	0.1981	0.2021	-0.0688	76707	0.0018	0.0203	0.1031	0.1478	0.1699	0.2135	0.2252	0.2331	0.2446	0.2494	0.2483
(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	0.0009	0.0020	(b) Aeropropulsive performance characteristics	C_I	-0.0013	-0.0012	-0.0016	070070	0.000	0.000	0.0003	0.0012	0.0010	0.0008	0.0003	0.0013	0.0010	0.0010	0.0010	0.0039	0.0030	0.0019	0.0024	-0.0013	0.0016	0.0010	0.0013	0.0016	0.0017	0.0010	0.0019	0.0017	0.0014	0.0020	0.0018	0.0015
I = 0) perform	$C_{F,j}$	-0.0174	-0.0474	oulsive perfor	C_n	0.0023	0.0010	-0.0005	-0.0025	6,002	2000.0	-0.0042	-0.0008	-0.0016	-0.0025	-0.0035	-0.0003	-0.0003	-0.0013	-0.0019	-0.0009	0.0001	-0.0003	-0.0011	0.0012	0.0013	0.0008	0.0030	-0.0010	-0.0027	-0.0022	-0.0018	-0.0030	-0.0018	-0.0034	-0.0017	0.0001
(a) Static (A	δ_y , deg	0.54	0.81	(b) Aeroprop	C_{Y}	-0.0077	-0.0025	0.0036	0.0103	0.00/8	0.000	0.0149	0.0008	0.0039	0.0078	0.0117	-0.0012	-0.0033	6000.0	-0.0001	0.0028	-0.0023	-0.0020	-0.0004	0.0041	-0.0032	0.0028	0.0037	0.0017	0.0064	0.0035	0.0045	9900.0	0.0034	0.0093	0.0037	-0.0021
	δ_p , deg	3.06	2.46		<i>C</i>	0.0998	0.0919	0.0754	0.05/6	0.05/3	8770	-0.0554	-0.2074	-0.2160	-0.2185	-0.2363	-0.5160	-0.5351	-0.5397	-0.5514	-0.6144	-0.6148	-0.6218	-0.6397	0.1003	0.0400	0.000	-0.1249	-0.2035	-0.2881	-0.3293	-0.3891	-0.4243	-0.4513	-0.4847	-0.5146	-0.5674
	F_fF_i	0.9762	0.9659		$C_{(D-F)}$	0.0244	-0.2476	-0.4912	-0.7698	0.0208	-0.4658	-0.7447	0.0596	-0.1791	-0.3921	-0.6469	0.2643	0.0814	-0.0853	-0.2812	0.3930	0.2555	0.1404	0.0079	0.0171	0.0173	0.0192	0.0224	0.0605	0960.0	0.1188	0.1463	0.1775	0.2013	0.2294	0.2614	0.3180
	F_{μ}/F_{i}	0.9777	0.9669		C_L	-0.0684	-0.0585	-0.0395	0.0245	0.0247	0.1495	0.2283	0.1077	0.2281	0.3313	0.4663	0.2508	0.4469	0.6118	0.8133	0.1973	0.4345	0.6404	0.8912	0.0688	7670.0	0.0018	0.0233	0.1031	0.1478	0.1699	0.2135	0.2252	0.2331	0.2446	0.2494	0.2483
	NPR	2.00	4.01		NPR	9.1	2.01	3.02	4.5	3.5	200	4.26	0.99	2.00	3.00	4.25	0.98	1.99	2.98	4.22	0.97	1.99	2.99	4.22	8 :	3 5	3 8	8	66.0	0.99	0.99	0.99	0.99	0.98	86.0	0.98	0.98
					α, deg	0.00	-0.01	0.01	70.0	14.90	14 98	14.96	24.94	24.98	24.93	24.92	45.02	44.99	44.98	44.95	60.02	59.96	59.99	59.96	0.00	20.0	3.57	19.95	24.96	29.95	32.49	35.29	38.00	40.05	42.02	44.90	50.02
					M	0.301	0.302	0.299	300	0.300	300	0.301	0.299	0.300	0.300	0.301	0.303	0.301	0.300	0.300	0.300	0.300	0.300	0.300	0.305	2000	0.30	0.298	0.299	0.301	0.300	0.299	0.299	0.298	0.298	0.304	0.297

 $\begin{array}{c} -0.0013 \\ -0.00013 \\ 0.00020 \\ 0.00020 \\ 0.00015$

 $C_{l,a}$ C_{l

	$C_{l,a}$	-0.0002	-0.0001	0.0020	0.0012	0.0009	0.0018	0.0003	0.0004	0.0004	0.0003	0.0002	0.0012	0.0014	0.0014	0.0014	0.0012	0.0013	0.0003	0.0001	0.0001	0.0011	0.0009	0.0001	0.0000	0.0001	0.0013	0.0014
	$C_{n,a}$	0.0012	0.0007	-0.0027	-0.0006	-0.0001	-0.0030	0.0013	0.0015	0.0016	0.0016	0.0018	0.0004	-0.0003	-0.0003	-0.0001	0.0001	0.000	0.0017	0.0015	0.0012	-0.0002	-0.0005	0.0017	0.0014	0.0010	-0.0003	-0.0005
	$C_{Y,a}$	-0.0040	-0.0027	0.0074	9000.0	-0.0018	0.0077	-0.0040	-0.0047	-0.0048	-0.0049	-0.0057	0.0004	0.0004	0.000	-0.0005	-0.0011	-0.0008	-0.0052	-0.0050	-0.004	-0.0003	0.0002	-0.0054	-0.0044	-0.0037	0.0001	0.0005
	$C_{m,a}$	0.0526	0.0023	-0.0632	-0.1593	-0.2505	-0.3385	0.1109	0.1137	0.1139	0.1131	0.1109	-0.0774	-0.0753	-0.0754	-0.0765	-0.0797	-0.0815	0.1096	0.0626	0.0129	-0.0777	-0.1573	0.1116	0.0614	0.0130	-0.0769	-0.1618
	$C_{D,a}$	0.0228	0.0234	0.0227	0.0432	0.0788	0.1201	0.0206	0.0210	0.0223	0.0232	0.0243	0.0196	0.0197	0.0195	0.0215	0.0225	0.0240	0.0204	0.0164	0.0154	0.0199	0.0371	0.0234	0.0201	0.0188	0.0218	0.0407
	$C_{L,a}$	-0.0350	-0.0060	0.0230	0.0841	0.1421	0.1889	-0.0775	-0.0797	-0.0802	-0.0798	-0.0781	0.0373	0.0349	0.0348	0.0346	0.0367	0.0377	-0.0771	-0.0436	-0.0141	0.0373	0.0872	-0.0782	-0.0426	-0.0143	0.0358	0.0887
cluded	C_{l}	-0.0007	-0.0005	0.0016	0.0008	0.0004	0.0014	0.0003	0.0002	0.0002	0.0001	-0.0001	0.0012	0.0011	0.0011	0.0011	0.0010	0.0011	0.0003	0.0001	0.0001	0.0011	0.0000	-0.0002	-0.0003	-0.0001	0.0010	0.0011
Table 4. Concluded	C,	0.0001	-0.0005	-0.0038	-0.0018	-0.0012	-0.0042	0.0013	0.0014	0.0014	0.0010	0.0010	-0.0004	-0.0004	-0.0004	-0.0007	-0.0008	-0.0010	0.0017	0.0015	0.0012	-0.0002	-0.0005	0.0011	0.0008	0.0004	-0.0008	-0.0011
	c_{γ}	0.0004	0.0017	0.0118	0.0050	0.0026	0.0121	-0.0040	-0.0042	-0.0040	-0.0026	-0.0027	0.0004	0.0008	0.0009	0.0017	0.0020	0.0030	-0.0052	-0.0050	0.0044	-0.0003	0.0002	-0.0032	-0.0023	-0.0015	0.0022	0.0028
	C_{m}	0.0408	-0.0095	-0.0752	-0.1712	-0.2624	-0.3505	0.1109	0.1114	0.1105	0.1071	0.1032	-0.0774	-0.0775	-0.0788	-0.0826	-0.0875	-0.0907	0.1096	0.0626	0.0129	-0.0777	-0.1573	0.1056	0.0555	0.0070	-0.0827	-0.1678
	$C_{(D-F)}$	-0.2650	-0.2600	-0.2565	-0.2281	-0.1813	-0.1290	0.0206	-0.0304	-0.0733	-0.1252	-0.1566	0.0196	-0.0280	-0.0732	-0.1206	-0.1526	-0.1796	0.0204	0.0164	0.0154	0.0199	0.0371	-0.1239	-0.1228	-0.1252	-0.1148	-0.0978
	C_L	0.0028	0.0566	0.1104	0.1956	0.2763	0.3460	-0.0775	-0.0765	-0.0753	-0.0722	-0.0688	0.0373	0.0501	0.0632	0.0781	0.0904	0.1001	-0.0771	-0.0436	-0.0141	0.0373	0.0872	-0.0708	-0.0231	0.0177	0.0776	0.1439
	NPR	4.26	4.27	4.26	4.26	4.26	4.26	0.09	2.02	3.00	4.25	5.00	0.98	1.99	3.04	4.25	5.06	5.75	0.99	0.99	0.99	0.98	0.97	4.22	4.19	4.25	4.10	4.25
	α, deg	5.02	10.00	14.92	19.88	24.82	29.77	0.58	0.56	0.53	0.48	0. 4	14.70	14.70	14.66	14.58	14.56	14.52	0.54	5.37	10.2	14.72	19.37	0.43	5.28	10.08	14.58	19.25
	W	0.502	0.502	0.500	0.499	0.500	0.498	0.700	0.699	0.697	0.700	0.699	0.699	0.701	0.699	0.700	0.700	0.700	0.699	0.702	0.700	0.699	0.694	0.700	0.704	0.703	0.698	0.698

Table 5. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 10^{\circ}; \, \delta_{B,E} = -10^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

NR F,FF F					$C_{l,a}$	-0.0014	-0.0002	0.000/	-0.0007	0.0017	0.000	0.0005	-0.0010	0.0003	-0.0008	-0.0011	-0.0017	-0.0016	90000	0000	-0.0006	-0.0017	-0.0012	0.0010	00007	-0.0005	-0.0008	-0.0008	-0.0009	0.0004	0.0007	0.0004	0.0017	0.0020
NPR F/Fi F/Fi δ_{μ} -deg δ_{ν} -deg $C_{F,\mu}$ $C_$					$C_{n,a}$	0.0024	0.0031	0.0031	-0.0022	-0.0017	0.0002	0.0001	0.0004	0.0012	0.0017	0.0017	0.0016	0.0008	0.0024	0.000	-0.0038	-0.0023	0.0033	0.0031	0.003	0.0010	0.0021	0.0002	-0.0002	0.0015	0.0019	0.0019	-0.0025	-0.0021
NPR $F_f F_i$ $F_f F_i$ δ_{p_i} deg δ_{p_i} deg $C_{F,N}$		C_l	-0.0001 -0.0001 0.0000		$C_{Y,a}$	-0.0086	0.0000	1,000 1,000	0.0056	0.0054	0.0002	-0.0004 4 0.0004	0.0003	-0.0057	-0.0055	-0.0048	-0.0053	-0.0032	0.0063	0.0043	0.0102	0.0035	-0.0083	0.0083 0.0083	-0.0033	-0.0036	-0.0064	-0.0014	-0.0011	-0.0044	-0.0057	-0.0056 -0.0047	0.0069	0.0055
NPR $F_f F_f$ $F_f F_f$ F_g deg F_g , deg F_g $F_f F_g$ F_g $F_$		<i>C</i> "	-0.0001 -0.0002 -0.0002		$C_{m,a}$	0.1036	0.1004	0.0365	-0.0696	-0.0478	-0.0576	-0.1071	-0.2341	-0.2637	-0.3212	0.1055	0.0485	-0.0045	0.0709	-0.2352	-0.3184	-0.3644	0.0368	0.0081	-0.1103	-0.2214	-0.3142	-0.4075	-0.4571	0.1128	0.1075	0.0770	-0.0748	-0.0816
NPR F_fF_i F_fF_i S_{μ} -deg S_{ν} -deg C_{F_f}		$C_{F,S}$	0.0004		$C_{D,a}$	0.0200	0.0316	0.0433	0.0232	0.0284	0.0367	0.0519	0.0/04	0.0965	0.1233	0.0173	0.0167	0.0196	0.0247	0.0726	0.1103	0.1363	0.0418	0.0448	0.0558	0.0799	0.1183	0.1630	0.1886	0.0202	0.0233	0.0275	0.0212	0.0239
α , deg F_fF_i F_fF_i F_fF_i F_fF_i F_gF_i F_gF_g		<i>C</i> ,	-0.0019 -0.0028 -0.0046	teristics	$C_{L,a}$	-0.0725	-0.0715	-0.0321	0.0354	0.0033	0.0114	0.0520	0.1305	0.1381	0.1822	-0.0727	-0.0310	0.0016	0.03/6	0.1301	0.1733	0.1976	-0.0126	0.0049	0.0558	0.1238	0.1788	0.2236	0.2501	-0.0802	0.0778	-0.0/01 -0.0502	0.0345	0.0360
α , deg F_fF_i F_fF_i F_fF_i F_fF_i F_gF_i F_gF_g		$C_{F,N}$	0.0016 0.0018 0.0021	nance charac	C_I	-0.0014	0.0013	-0.0010	-0.0007	9000.0	0.0000	0.000	010010	90000	-0.0003	-0.0011	-0.0017	-0.0016	9000	0.000	9000.0-	-0.0017	-0.0008	0000	-0.0003	0.0000	-0.0003	-0.0003	-0.0004	0.0004	0.0003	0.000	0.0017	0.0016
α , deg F_fF_i F_fF_i F_fF_i F_fF_i F_gF_i F_gF_g	•	$C_{F,j}$	-0.0170 -0.0319 -0.0470	ulsive perfon	<i>C</i> "	0.0024	0.0017	0.0015	-0.0022	-0.0030	-0.0024	6700.0	# COO	-0.0007	-0.0012	0.0017	0.0016	0.0008	-0.0024 -0.0019	-0.008	-0.0038	-0.0023	0.0003	0.000	-0.0017	-0.0020	-0.0010	-0.0029	-0.0032	0.0015	0.0014	0.0000	-0.0025	-0.0026
α , deg α , β		δ _y , deg	1.20 1.13 0.92	(b) Aeroprop	C_{Y}	-0.0086	0.0032	0.0087	0.0056	0.0110	0.0102	0.0119	0.000	0.0045	0.0070	-0.0048	-0.0053	-0.0032	0.0063	0.0003	0.0102	0.0035	0.0041	0.0039	0.0092	0.0000	0.0061	0.0111	0.0114	0.0044	-0.0037	-0.0002 -0.0002	0.0069	0.0076
$α, deg$ NPR F_fF_i $α, deg$ NPR C_L 0.09723 4.02 $0.97234.02$ $0.97234.02$ $0.97660.00$ 0.00 $0.000.00$ 0.00 $0.000.01$ 0.00 $0.000.01$ 0.00 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.01$ 0.09 $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ $0.000.00$ 0.00		δ_p , deg	5.30 3.29 2.53		<i>C</i> ,,	0.1036	0.0690	-0.0417	9690'0-	-0.0783	-0.1013	0.1854	-0.2750	-0.3084	-0.4006	0.1055	0.0485	0.0045	-0.0/03	-0.2352	-0.3184	-0.3644	-0.0415	-0.0708	-0.1900	-0.3010	-0.3932	-0.4868	-0.5367	0.1128	0.0964	0.0823	-0.0748	-0.0928
C4, deg NPR -0.01 -0.03 -0.09		F_fF_i	0.9734 0.9705 0.9556		$C_{(D-F)}$	0.0200	-0.2496	-0.7512	0.0232	-0.2245	0.4445	-0.70/4	-0.1528	-0.3586	-0.5922	0.0173	0.0167	0.0196	0.0247	0.0726	0.1103	0.1363	-0.7541	-0.7269	-0.7155	-0.6687	-0.5951	-0.5192	-0.4776	0.0202	0.0/52	-0.2614	0.0212	-0.0694
α, deg -0.01 0.00 0.00 0.00 14.99 14.99 14.99 14.99 19.		F_{μ}/F_{i}	0.9778 0.9723 0.9566		C_L	-0.0725	-0.0462 -0.0462	0.0208	0.0354	0.0968	0.1704	0.2896	0.1503	0.3820	0.5520	-0.0727	-0.0310	0.0016	0.0370	0.1301	0.1733	0.1976	0.0207	0.1929	0.2973	0.4317	0.5474	0.6549	0.7076	-0.0802	0.0686	-0.0383	0.0345	0.0702
		NPR	1.99 2.98 4.02		NPR	1.00	3.03	4.25	0.99	66.1 66.5	2.99	000	2.00	3.01	4.26	0.99	0.99	66.0	66.0	0.99	0.99	0.98	4.25	4.23	4.27	4.24	4.24	4.23	4.27	0.99	7.01	3.00 4.25	0.98	2.01
M 0.298 0.301 0.300 0.298 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.298 0.298 0.298 0.298 0.298 0.298 0.300 0.30					α, deg	-0.01	0.00	-0.03	14.97	14.99	15.00	24.95	24.96	24.93	24.91	0.01	5.01	86.6	19.97	24.96	29.91	32.48	6.03	10.01	14.98	19.94	24.90	29.87	32.07	0.05	0.0	0.09	14.98	14.93
					M	0.298	0.299	0.301	0.300	0.301	0.301	0.501	0.299	0.299	0.300	0.300	0.301	0.300	0.300	0.300	0.298	0.299	0.300	0.300	0.299	0.298	0.299	0.298	0.300	0.499	0.500	0.499	0.499	0.499

$C_{l,a}$	0.0018	0.0013	-0.0006	0.0002	0.0002	0.0001	0.0003	0.0000	-0.0001	0.0016	0.0002	-0.0007	-0.0004	-0.0009	-0.0008	-0.0007	0.0005	-0.0003	-0.0004	0.0000	9000:0	0.0004	0.0003	0.0002	-0.0001	0.0010	0.0012	0.0011	0.0008	0.0008	0.0002	0.0002	0.0003	0.0010	0.0009	0.0005	0.0003	0.0007	0.0009	0.0013
$C_{n,a}$	-0.0018	-0.0021	0.0001	0.0004	9000.0	0.0002	0.0018	0.0017	0.0010	-0.0020	-0.0004	0.0003	-0.0023	0.0030	0.0024	0.0024	-0.0011	0.0005	0.0011	-0.0015	0.0017	0.0018	0.0019	0.0017	0.0016	-0.0003	-0.0003	-0.0003	0.0004	9000.0	0.0016	0.0013	0.0011	-0.0005	-0.0013	0.0004	-0.0002	9000.0-	-0.0015	-0.0017
$C_{Y,a}$	0.0047	0.0052	-0.0027	-0.0038	-0.0040	-0.0031	-0.0059	-0.0058	-0.0041	0.0050	-0.0003	-0.0035	0.0049	06000	-0.0071	-0.0073	0.0029	-0.0028	-0.0054	0.0027	-0.0051	-0.0059	-0.0062	-0.0056	-0.0050	-0.0004	-0.0005	-0.0004	-0.0004	0.0003	-0.0050	-0.0046	-0.0041	0.0003	0.0026	-0.0013	0.0003	0.0013	0.0034	0.0043
$C_{m,a}$	-0.0898	-0.1137	-0.2572	-0.2728	-0.2839	-0.3098	0.1129	0.0576	0.0037	-0.0734	-0.1703	-0.2578	-0.3384	0.0621	0.0101	-0.0270	-0.1213	-0.2197	-0.3157	-0.4061	0.1187	0.1136	0.1097	0.0966	0.0836	-0.0860	-0.0909	-0.0940	-0.1129	-0.1235	0.1136	0.0643	0.0127	-0.0847	-0.1717	0.1036	0.0492	0.0064	-0.1094	-0.2003
$C_{D,a}$	0.0280	0.0343	0.0787	0.0823	0.0875	0.0997	0.0205	0.0173	0.0180	0.0206	0.0431	0.0791	0.1193	0.0283	0.0277	0.0314	0.0388	0.0629	0.1040	0.1495	0.0223	0.0220	0.0238	0.0247	0.0253	0.0218	0.0228	0.0244	0.0287	0.0316	0.0222	0.0177	0.0166	0.0221	0.0432	0.0261	0.0220	0.0221	0.030	0.0541
$C_{L,a}$	0.0420	0.0611	0.1505	0.1583	0.1662	0.1846	-0.0805	-0.0409	-0.0076	0.0329	0.0956	0.1509	0.1935	-0.0352	-0.0008	0.0136	0.0693	0.1312	0.1899	0.2358	-0.0844	-0.0818	-0.0780	6990.0-	-0.0570	0.0425	0.0442	0.0465	0.0606	0.0685	-0.0800	-0.0451	-0.0138	0.0420	0.0969	-0.0730	-0.0340	-0.0128	0.0582	0.1136
<i>'</i> 2	0.0015	0.0015	9000'0	-0.0003	-0.0001	0.0003	0.0003	0.0000	-0.0001	0.0016	0.0002	-0.0007	-0.0004	-0.0007	90000	-0.0005	0.0007	-0.0001	-0.0003	0.0002	9000:0	0.0003	0.0003	0.0003	0.0002	0.0010	0.0010	0.0010	0.0009	0.0010	0.0002	0.0002	0.0003	0.0010	0.0009	9000.0	0.0004	0.0008	0.0010	0.0014
۲,	-0.0028	-0.0032	0.0001	-0.0001	-0.0003	-0.0009	0.0018	0.0017	0.0010	-0.0020	-0.0004	0.0003	-0.0023	0.0020	0.0012	0.0012	-0.0023	-0.0005	0.0000	-0.0025	0.0017	0.0016	0.0015	0.0011	0.0010	-0.0003	-0.0005	-0.0008	-0.0010	-0.0012	0.0016	0.0013	0.0011	-0.0005	-0.0013	-0.0001	-0.0007	-0.0011	0.0020	-0.0024
$C_{\mathbf{x}}$	0.0083	0.0097	-0.0027	-0.0017	-0.0004	0.0014	-0.0059	-0.0058	-0.0041	0.0050	-0.0003	-0.0035	0.0049	-0.0045	-0.0026	-0.0029	0.0074	0.0017	-0.0009	0.0071	-0.0051	-0.0048	-0.0043	-0.0033	-0.0025	-0.0004	9000.0	0.0015	0.0019	0.0029	-0.0050	-0.0046	-0.0041	0.0003	0.0026	0.000	0.0026	0.0036	0.0057	0.0066
C,	-0.1059	-0.1423	-0.2572	-0.2839	-0.2999	-0.3383	0.1129	0.0576	0.0037	-0.0734	-0.1703	-0.2578	-0.3384	0.0341	-0.0181	-0.0551	-0.1499	-0.2482	-0.3443	-0.4347	0.1187	0.1079	0.1015	0.0822	0.0653	-0.0860	9960.0-	-0.1021	-0.1277	-0.1419	0.1136	0.0643	0.0127	-0.0847	-0.1717	0.0892	0.0348	0.0080	-0.1238	-0.2149
$C_{(D-F)}$	-0.1490	-0.2428	0.0787	-0.0035	-0.0754	-0.1573	0.0205	0.0173	0.0180	0.0206	0.0431	0.0791	0.1193	-0.2564	-0.2563	-0.2478	-0.2380	-0.2057	-0.1547	-0.0962	0.0223	-0.0284	-0.0708	-0.1222	-0.1535	0.0218	-0.0245	-0.0649	-0.1143	-0.1407	0.0222	0.0177	0.0166	0.0221	0.0432	-0.1203	-0.1232	-0.1205	-0.1104	-0.0828
C_L	0.1002	0.1477	0.1505	0.2079	0.2531	0.3164	-0.0805	-0.0409	-0.0076	0.0329	0.0956	0.1509	0.1935	-0.0232	0.0359	0.0750	0.1556	0.2411	0.3228	0.3903	-0.0844	-0.0770	-0.0724	-0.0605	-0.0500	0.0425	0.0615	0.0756	0.1051	0.1210	-0.0800	-0.0451	-0.0138	0.0420	0.0969	-0.0666	-0.0151	0.0187	0.1022	0.1/10
NPR	3.02	4.26	0.97	2.01	3.01	4.26	0.99	0.99	0.99	0.98	0.98	0.97	96:0	4.24	4.25	4.25	4.27	4.25	4.26	4.27	0.98	2.00	3.02	4.24	2.00	0.97	2.00	2.99	4.30	5.01	0.98	0.98	0.99	0.97	96.0	4.25	4.25	4.24	4.23	4.20
α, deg	14.95	14.92	24.87	24.81	24.81	24.74	0.02	5.06	10.00	14.96	19.90	24.86	29.76	0.01	4.95	86.6	14.90	19.83	24.79	29.74	0.12	0.19	0.11	0.09	0.08	14.97	14.88	14.81	14.92	14.80	0.20	2.08	10.04	14.93	19.89	0.09	2.00	10.03	14.96	17.8
M	0.499	0.499	0.500	0.500	0.500	0.500	0.501	0.502	0.499	0.501	0.499	0.498	0.499	0.502	0.502	0.502	0.500	0.498	0.498	0.499	0.700	0.698	0.700	0.699	0.700	0.699	0.698	0.698	0.698	0.698	0.699	0.701	0.700	0.699	0.700	0.701	0.702	0.702	0.698	0.099

Table 6. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 15^{\circ}; \, \delta_{B,E} = -10^{\circ}; \, \delta_{C,F} = -10^{\circ} \right]$

	C _{1,a} -0.0009 -0.0003 -0.0003 -0.0003 -0.0009 -0.0009 -0.0009 -0.0001 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0003 -0.0004 -0.0003 -0.0003	0.0021
	C _{n,a} 0.0024 0.0024 0.0023 0.0023 0.0033 0.0033 0.0020	0.0008
C_l -0.0001 0.0000 0.0000	C _{Y,a} -0.0089 -0.0089 -0.0091 -0.0085 -0.0085 -0.0085 -0.0084 -0.0084 -0.0084 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0096 -0.0097 -0.0097 -0.0097 -0.0097 -0.0097	-0.0029
<i>C_n</i> -0.0001 -0.0001	C _{m,a} 0.1065 0.0889 0.0521 0.0616 0.0702 0.0655 0.0989 0.1393 0.2372 0.2372 0.6521 0.6520 0.6530	-0.5765
$C_{F,S}$ 0.0004 0.0006	$C_{D,a}$ 0.0242 0.0221 0.0221 0.0221 0.0221 0.0312 0.0312 0.0393 0.0681 0.0791 0.0967 0.1072 0.2896 0.3067 0.1072 0.4418 0.4418 0.4419 0.0153 0.0207 0.0351 0.0575 0.1839 0.2072 0.2066	0.3204
C _m -0.0035 -0.0051 -0.0091 eristics	$C_{L,a}$ -0.0764 -0.0641 -0.0277 -0.0445 0.0198 0.0497 0.0812 0.1384 0.1903 0.1903 0.2557 0.2216 0.2346 0.2346 0.2346 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759 0.0759	0.2534
δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_m 1.37 -0.0162 0.0022 -0.000 0.77 -0.0307 0.0024 -0.000 0.80 -0.0448 0.0044 -0.009	C_l	0.0021
$C_{F,j}$ -0.0162 -0.0307 -0.0448	C _n	0.0008
8y. deg 1.37 0.77 0.80 (b) Aeropropi	C_{Y} C_{Y	-0.0029
δ_p , deg 7.85 4.44 5.66	C_m 0.1065 0.0344 0.0271 0.0973 0.0702 0.1803 0.2889 0.2372 0.3787 0.0915 0.6220 0.6220 0.6220 0.6221 0.093 0.0521 0.093 0.0521 0.094 0.4444 0.4588	-0.5765
F _J F _i 0.9105 0.9242 0.9196	C_{D-F} 0.0242 -0.2326 -0.4573 -0.7314 0.0199 -0.2188 -0.4314 -0.6757 0.0681 -0.1403 -0.1403 0.1192 -0.1723 0.02979 0.1192 0.0193 0.0160 0.0161 0.0153 0.0161 0.0153 0.02072 0.01839 0.02072 0.02072 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073 0.02073	0.3204
F _J F _i 0.9194 0.9271 0.9242	C_L	0.2534
NPR 2.00 3.00 3.99	NPR 1.00 2.00 2.00 2.00 2.00 3.03 3.03 3.03 3	86.0
	α, deg 0.018 0.011 0.011 15.03 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.94 14.97 14.93 16.00 19.00	49.99
	0.301 0.302 0.302 0.302 0.302 0.303 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.299 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298 0.298	0.300
		27

	$C_{l,a}$	0.0047	0.0044	0.0046	0000	0.0000	0.0002	0.0011	0.0014	0.0011	0.0015	0.0010	0.0024	0.0027	0.0024	0.0021	0.0030	0.0027	0.0025	0.0014	0.0022	0.0005	0.000	0.0003	0.0002	0.0020	0.0017	0.0017	-0.0004	0.0001	0.0003	0.000	0.0002	0.0002	0.0018	0.0004	-0.0003	-0.0003	0.0001	0.0003	0.0016	
	$C_{n,a}$	-0.0004	-0.0006	0.0024	00033	0.0031	0.0034	0.0003	0.0008	0.0018	-0.0004	-0.0001	0.0039	0.0012	0.0031	0.0054	0.0071	0.0061	0.0048	-0.0002	0.0017	0.0018	0.0020	0.0017	0.0010	-0.0025	-0.0025	-0.0030	-0.0001	0.0003	0.0003	0.000	0.0015	0.0010	-0.0024	-0.0008	-0.0003	-0.0024	0.0005	0.0010	-0.0021	
	$C_{Y,a}$	0.0027	0.0036	0.0088	0.0136	-0.0102	-0.0117	-0.0020	-0.0047	-0.0077	-0.0012	0.0030	0.0133	6.52	-0.0143	-0.0217	-0.0250	-0.0219	-0.0177	-0.0045	-0.0092	-0.0055	0.0060	0.0053	0.0030	0.0066	0.0067	0.0078	-0.0021	-0.0034	0.0013	7000	-0.0050	-0.0036	0.0067	0.0008	-0.0014	0.0054	-0.0020	0.0038	0.0048	
	$C_{m,a}$	-0.5987	-0.6185	-0.6853	0.058	0.0081	-0.0523	-0.1216	-0.2336	-0.3274	-0.4214	0.4607	0.4959	0.5309	-0.6105	-0.6458	-0.6791	-0.7142	-0.7289	-0.7347	-0.7344	0.1134	0.1006	0.0852	0.0/12	0.0898	-0.1081	-0.1244	-0.2581	-0.2829	-0.2991	0.1173	0.0568	0.0037	-0.0756	-0.1712	-0.2585	-0.3408	0.0650	0.02/0	-0.1227	
	$C_{D,a}$	0.3613	0.3949	0.4559	0.4936	0.0344	0.0360	0.0430	0.0682	0.1072	0.1516	0.1730	0.1934	0.2537	0.2831	0.3186	0.3691	0.4198	0.4555	0.4817	0.4931	0.0211	0.0232	0.0248	0.0262	0.0234	0.0289	0.0326	0.0769	0.0837	0.0911	0.0970	0.0168	0.0147	0.0194	0.0414	0.0774	0.1180	0.0234	0.0213	0.0303	
	$C_{L,a}$	0.2303	0.2024	0.1805	0.1024	-0.0088	0.0269	0.0642	0.1337	0.1903	0.2368	0.2569	0.26/1	0.2800	0.3024	0.3093	0.2976	0.2798	0.2475	0.2038	0.1759	-0.0805	-0.0/1/	0.0576	0.0471	0.0430	0.0576	0.0700	0.1517	0.1667	0.1790	0.1914	-0.0409	-0.0078	0.0344	0.0964	0.1518	0.1951	-0.0422	-0.0216	0.0680	
tinued	C_{l}	0.0047	0.0044	0.0046	0.000	0.0000	0.0005	0.0014	0.0017	0.0014	0.0018	0.0014	0.0038	0.0041	0.0037	0.0036	0.0044	0.0041	0.0039	0.0028	0.0037	0.0005	0.0003	0.0002	0.0003	0.0017	0.0017	0.0019	-0.0004	-0.0002	0.0002	0.0007	0.0002	0.0002	0.0018	0.0004	-0.0003	-0.0003	0.0002	0.0003	0.0017	
Table 6. Continued	<i>C</i> "	-0.0004	90000	-0.0024	0.00	0.0011	0.0014	-0.0017	-0.0012	-0.0002	-0.0024	-0.0021	0.0016		-0.0024	0.0000	0.0016	90000	-0.0006	-0.0057	-0.0039	0.0018	0.0016	0.0013	0.0003	0.0030	-0.0029	-0.0037	-0.0001	-0.0001	0.0007	0.0010	0.0015	0.0010	-0.0024	-0.0008	-0.0003	-0.0024	-0.0003	0.0002	-0.0029	
	Ç	0.0027	0.0036	0.0088	0.0136	90000	-0.0010	0.0088	0.0061	0.0033	0.0095	0.0077	0.0025	0.007	0.0035	-0.0040	-0.0072	-0.0038	-0.0002	0.0135	0.0088	-0.0055	-0.0038	0.0029	0.0009	0.0089	0.0091	0.0117	-0.0021	-0.0012	0.0011	0.0022	-0.0050	-0.0036	0.0067	0.0008	-0.0014	0.0054	0.0019	0.0001	0.0087	
	C _m	-0.5987	-0.6185	-0.6853	0.7292	-0.1527	-0.2124	-0.2825	-0.3945	-0.4910	-0.5802	-0.6200	-0.6524 0.707.0	0.7303	-0.7674	-0.8008	-0.8357	-0.8729	-0.8831	-0.8930	-0.8929	0.1134	0.0808	0.0563	0.0132	0601	-0.1371	-0.1819	-0.2581	-0.3029	-0.3282	0.3/30	0.0568	0.0037	-0.0756	-0.1712	-0.2585	-0.3408	0.0062	0.0312	-0.1807	
	$C_{(D-F)}$	0.3613	0.3949	0.4559	0.4936	-0.7230	-0.7030	-0.6790	-0.6264	-0.5665	-0.4667	-0.4309	0.3949	0.3270	-0.2406	-0.1686	-0.0685	0.0338	0.1403	0.2210	0.2711	0.0211	-0.0691	-0.1503	0.2303	0.010.0	-0.1379	-0.2256	0.0769	0.0045	-0.0636	0.1442	0.0168	0.0147	0.0194	0.0414	0.0774	0.1180	-0.2565	0.2526	-0.2292	
	c_L	0.2303	0.2024	0.1805	0.1624	0.1362	0.2370	0.3383	0.4692	0.5908	0.6817	0.7236	0.7/05	0.8202	0.8752	0.9009	0.9367	0.9634	0.9416	0.9423	0.9279	-0.0805	-0.0589	0.0440	0.0198	0.0200	0.1165	0.1672	0.1517	0.2175	0.2653	0.3320	0.0409	-0.0078	0.0344	0.0964	0.1518	0.1951	-0.0132	0.0309	0.1664	
	NPR	86.0	0.97	0.97	4.25	4.24	4.24	4.24	4.25	4.26	4.24	4.25	4.26	4.20 7.76	4.26	4.26	4.26	4.25	4.26	4.25	4.25	6.6 8.6	2.00	9.5	000	2.01	3.00	4.24	0.97	5.00	3.00	6.50 0.00	66	00.1	66.0	0.98	0.97	0.97	4.26	4.26	4.26	
	α, deg	55.01	59.97	65.01	67.00	4.98	10.02	14.94	19.92	24.87	29.88	31.84	34.95	20.05	41.97	44.92	50.00	54.95	59.98	8.78	67.95	90.0	90.0	90.0	27.0	14.95	15.01	14.77	24.86	24.85	24.71	24.47 0.05	5.05	10.02	14.98	19.89	24.90	29.87	0.05	66.4 90.90	14.89	
	M	0.299	0.304	0.302	0.301	0.300	0.300	0.300	0.300	0.298	0.302	0.302	0.299	0.200	0.299	0.301	0.299	0.297	0.302	0.298	0.297	0.500	0.501	0.500	0.300	0.499	0.498	0.502	0.498	0.499	0.498	0.499	0.496	0.504	0.500	0.500	0.498	0.498	0.498	0.500	0.502	

°01
T II
δ _{C.F} =
Š
0°;
_
Ш
$\delta_{\mathbf{B},\mathbf{E}}$
δ
20°;
Ш
Ą
δ,

	$C_{l,a}$	0.0008 0.0012 0.0015	0.0023 0.0023 0.0026 0.0003	0.0003 0.0002 0.0003 0.0024	0.0023 0.0017 0.0051 0.0030 0.0001	0.0007 0.0008 0.0001 0.0001 0.0001 0.0002 0.0022 0.0022 0.0024
	$C_{n,a}$	0.0019 0.0035 0.0029 0.0037	0.0023 0.0021 0.0030 0.0010	0.0007 0.0002 0.0011 0.0035	0.0035 0.0038 0.00036 0.0004	0.0003 0.0003 0.0001 0.0003 0.0003 0.0003 0.0003 0.0003 0.0004
C_l 0.0000 0.0000 0.0001	$C_{Y,a}$	-0.0073 -0.0088 -0.0068 -0.0146	-0.0039 -0.0034 -0.0117	0.0020 0.0041 0.0044 0.0130	0.0014 0.0014 0.0043 0.0094 0.0022	0.0057 0.0057 0.0057 0.0051 0.0060 0.0087 0.0087 0.0087 0.0060 0.0122 0.0049
C _n 0.0000 0.0000 -0.0001	C _{m,a}	0.1101 0.0771 0.0727 0.0727	-0.0753 -0.1008 -0.1256 -0.2331	-0.2921 -0.3295 -0.3615 -0.5247 -0.5973	0.5380 0.6722 0.6723 0.7171 0.7558 0.1034	0.0027 0.0027 0.0644 0.1457 0.2291 0.3559 0.3559 0.4325 0.6433 0.6433 0.65225
C _{F,S} 0.0002 0.0002 0.0006	$C_{D,a}$	0.0267 0.0495 0.0578 0.0624	0.0475 0.0600 0.0701 0.0716	0.1193 0.1385 0.1540 0.2685 0.2972	0.3133 0.3330 0.3962 0.4227 0.4456 0.0175	0.0195 0.0195 0.0241 0.0384 0.0702 0.1303 0.1532 0.1828 0.2059 0.2059
<i>C_m</i> -0.0043 -0.0140	eristics $C_{L,a}$	-0.0770 -0.0529 -0.0522 -0.0562	0.0215 0.0215 0.0410 0.0614 0.1316	0.1555 0.1819 0.2061 0.2553 0.2925	0.3086 0.3268 0.2345 0.2510 0.2644 0.0707	0.0009 0.0321 0.0748 0.1281 0.1729 0.1934 0.2192 0.2375 0.2497 0.2526
C _{F,N} 0.0022 0.0040 0.0070	(b) Aeropropulsive performance characteristics C_{Y} C_{n} C_{l} $C_{L,c}$	0.0006 0.0006 0.0016 0.0023	0.0025 0.0026 0.0033 0.0003	0.0001 0.0005 0.0016 0.0028	0.0033 0.0042 0.0045 0.0038 0.0036	0.0007 0.0008 0.0017 0.0006 0.0001 0.0030 0.0025 0.0022 0.0024
$C_{F,j}$ -0.0154 -0.0292 -0.0432	Isive pertorm C_n	0.0019 0.0032 0.0027 0.0017	0.0020 0.0019 0.0010 0.0010	0.0004 0.0000 0.0002 0.0006	0.0007 0.0007 0.0007 0.0007	0.0000 0.00003 0.00011 0.00011 0.0003 0.0003 0.00019 0.00014
δ _y , deg 0.79 0.47 0.79	b) Aeropropu C _Y	-0.0073 -0.0055 -0.0030 0.0018	0.0005 0.0005 0.0027	0.0054 0.0080 0.0121 -0.0031	0.0023 0.00043 0.0002 0.0002 0.0002 0.0022	0.0057 0.0057 0.0057 0.0040 0.0040 0.0087 0.0060 0.0122 0.0049
δ _p , deg 8.13 7.86 9.24		0.1101 0.0090 -0.0605 -0.1725	-0.1450 -0.2359 -0.3735 -0.2331	-0.3620 -0.4647 -0.6081 -0.5247 -0.6689	-0.1708 -0.9107 -0.6186 -0.7502 -0.8575 -0.926 0.1034	0.0243 0.0027 0.0644 0.1457 0.2291 0.3144 0.3559 0.3933 0.4325 0.4325 0.4325 0.63325
F _f F _i 0.8677 0.8801 0.8847	$C_{(D-F)}$			-0.0898 -0.2557 -0.4664 0.2685 0.1442		
F,F _i 0.8766 0.8885 0.8964	C_L	-0.0770 -0.0185 0.0113 0.0673			0.9320 0.2007 0.4735 0.6922 0.9653	0.0009 0.0321 0.0748 0.1281 0.1729 0.1934 0.2192 0.2299 0.2375 0.2526
NPR 2.00 3.00 4.00	NPR		2.01 3.00 4.27 0.99	2.01 3.00 4.25 0.98 2.01	2.00 2.00 3.00 1.00	1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
	α, deg	0.02 0.00 0.02 7.00	14.97 14.98 14.91 24.98	24.42.42.42.42.42.42.42.42.42.42.42.42.4	59.99 59.99 59.99 59.98 50.01	10.02 15.02 19.52 29.94 32.37 37.99 37.99 42.02 44.99
	W	0.301 0.301 0.301 0.301	0.300 0.300 0.299	0.300 0.300 0.300 0.299	0.298 0.298 0.298 0.299 0.301	0.200 0.299 0.299 0.299 0.299 0.300 0.300 0.300 0.300 0.300 0.299 0.300 0.299

$C_{l,a}$	0.0045	0.0045	0.0049	0.0062	0.0024	0.0022	0.0021	0.0033	0.0032	0.0030	0.0026	0.0023	0.0020	0.0024	0.0015	0.0012	0.0017	0.0025	0.0020	0.0017	-0.0011	0.0010	0.0003	0.0003	0.0002	0.0004	0.0006	0.0014	0.0016	0.0016	0.0017	0.0021	-0.0006	-0.0002	0.0000	0.0003	0.0010	0.0003	-0.0001	-0.0003	0.0016	0.0001	-0.0006	-0.0003	0.0008
$C_{n,a}$	-0.0009	-0.0013	-0.0030	-0.0049	0.0034	0.0039	0.0045	0.0004	0.0039	0.0057	0.0044	0.0050	0.0021	90000	0.0017	0.0028	0.0043	0.0058	0.0052	0.0033	-0.0052	-0.0006	0.0023	0.0022	0.0015	0.0017	0.0027	-0.0024	-0.0024	-0.0030	-0.0026	-0.0023	-0.0001	0.0000	-0.0003	-0.0001	0.0001	0.0016	0.0014	0.0007	-0.0024	-0.0007	-0.0001	-0.0029	0.0030
$C_{Y,a}$	0.0051	0.0071	0.0120	0.0181	-0.0098	-0.0114	-0.0130	0.0005	-0.0112	0.0167	-0.0127	-0.0154	-0.0082	-0.0018	-0.0101	-0.0135	//10.0-	-0.0196	-0.0181	-0.0120	0.0098	-0.0020	-0.0074	-0.0070	-0.0046	-0.0072	-0.0157	0.0064	0.0061	0.0083	0.0049	-0.0010	-0.0016	-0.0023	-0.0010	-0.0039	-0.0099	-0.0048	-0.0045	-0.0030	0.0068	0.0009	-0.0020	0.0073	-0.0099
$C_{m,a}$	-0.5980	-0.6142	-0.6816	-0.7287	0.0796	0.0249	-0.0326	-0.1033	-0.2117	-0.3055	-0.4071	-0.4501	-0.5089	-0.5682	-0.6023	-0.6313	-0.6631	-0.7010	-0.7283	-0.7486	-0.7447	-0.7440	0.1105	0.0882	0.0712	0.0712	0.0664	-0.0789	-0.1054	-0.1242	-0.1411	-0.1588	-0.2604	-0.2979	-0.3190	-0.3403	-0.3585	0.1088	0.0544	0.0007	-0.0784	-0.1731	-0.2607	-0.3431	0.0737
$C_{D,a}$	0.3610	0.3937	0.4545	0.4970	0.0884	0.0848	0.0843	0.0887	0.1098	0.1448	0.1863	0.2046	0.1970	0.2395	0.2661	0.2922	0.3267	0.3786	0.4247	0.4639	0.4849	0.4978	0.0229	0.0239	0.0277	0.0315	0.0330	0.0216	0.0269	0.0339	0.0381	0.0431	0.0789	0.0899	0.0987	0.1078	0.1160	0.0199	0.0174	0.0182	0.0218	0.0438	0.0797	0.1209	0.0374
$C_{L,a}$	0.2291	0.1978	0.1778	0.1588	0.0619	767070	-0.0004 40.004	0.0341	0.09/8	0.1516	0.2021	0.2255	0.2763	0.2966	0.30/5	0.3146	0.3188	0.3104	0.2905	0.2612	0.2137	0.1827	-0.0787	-0.0621	-0.0473	-0.0508	-0.0508	0.0386	0.0554	9690.0	0.0817	0.0937	0.1542	0.1788	0.1931	0.2070	0.2175	-0.0763	-0.0375	-0.0043	0.0376	0.0985	0.1540	0.1972	-0.0533
C_I	0.0045	0.0045	0.0049	0.0062	0.0031	0.0030	0.0028	0.0040	0.0039	0.0038	0.0033	0.0030	0.0044	0.0048	0.0039	0.0037	0.0040	0.0050	0.0044	0.0041	0.0013	0.0034	0.0003	0.0002	0.0003	0.0007	0.0010	0.0014	0.0015	0.0017	0.0020	0.0024	-0.0006	-0.0003	0.0001	90000	0.0013	0.0003	-0.0001	-0.0003	0.0016	0.0001	-0.0006	-0.0003	0.0010
<i>C</i> "	-0.0009	-0.0013	-0.0030	0.0049	0.0013	0.0019	0.0024	-0.0017	0.0017	0.0036	0.0024	0.0028	-0.0021	-0.0049	-0.0025	-0.0014	0.0001	0.0016	0.001	-0.0010	-0.0094	-0.0048	0.0023	0.0021	0.0014	0.0010	0.0013	-0.0024	-0.0024	-0.0031	-0.0033	-0.0037	-0.0001	-0.0001	-0.0003	-0.0008	-0.0013	0.0016	0.0014	0.0007	-0.0024	-0.0007	-0.0001	-0.0029	0.0022
C_{Y}	0.0051	0.0071	0.0120	0.0181	0.00/0	0.0049	0.0034	0.0168	0.0055	0.0003	0.0031	0.0014	0.0059	0.0123	0.0039	0.0005	-0.003/	-0.0055	-0.0043	0.0021	0.0239	0.0121	-0.0074	-0.0058	-0.0032	-0.0012	-0.0022	0.0064	0.0073	0.0097	0.0109	0.0124	-0.0016	-0.0010	0.0004	0.0020	0.0037	-0.0048	-0.0045	-0.0030	0.0068	0.0000	-0.0020	0.0073	-0.0039
<i>C</i> ^{<i>m</i>}	-0.5980	-0.6142	-0.6816	-0.7287	-0.1683	0.2202	0.27/14	0.3300	0.4000	0.5513	-0.6514	-0.6990	-0.7472	-0.807/	-0.8388	0.8688	0.0300	-0.9398	-0.9619	-0.9876	-0.9830	-0.9825	0.1105	0.0636	0.0228	-0.0174	-0.0481	-0.0789	-0.1301	-0.1727	-0.2298	-0.2734	-0.2604	-0.3229	-0.3677	-0.4294	-0.4738	0.1088	0.0544	0.0007	-0.0784	-0.1731	-0.2607	-0.3431	-0.0147
$C_{(D-F)}$	0.3610	0.3937	0.4545	0.4970	10.0307	0.0389	0.0130	0.5505	0.3300	0.2005	-0.3906	0.3648	19.54	0.2761	0.7730	0.1/9/	0.000	0.00.0	0.1025	0.1947	0.2790	0.3318	0.0229	-0.0631	-0.1386	-0.2346	-0.2926	0.0216	-0.0540	-0.1210	-0.2081	-0.2568	0.0789	0.0150	0.0434	-0.1167	-0.1570	0.0199	0.0174	0.0182	0.0218	0.0438	0.0797	0.1209	-0.2282
C_L	0.2291	0.1978	0.1778	0.1588	0.0038	0.1377	0.2450	0.2403	0.4/10	0.750	0.0/39	407/.0	0.8020	0.8520	0.0/39	0.9001	0.5530	0.9393	0.9561	0.9686	0.9394	0.9191	-0.0787	-0.0496	-0.0243	0.0060	0.0084	0.0386	0.0899	0.1347	0.1936	0.2348	0.1542	0.22/3	0.2842	0.3604	0.4091	-0.0763	-0.0375	-0.0043	0.0376	0.0985	0.1540	0.1972	-0.0084
NPR	0.98	0.97	0.97	0.97	07.4	5.4 5.4 5.4	1. t	†	C2.4	3 5	67.4	4.20	C7. 5	07.4		2.4 2.5	77.	C7.4	07.4	5.5	4.25	4.25	0.99	5.00	3.00	4.26	2.00	0.99	1.99	3.00	4.26	5.00	0.97	2.00	66.7	4.25	2.00	0.99	0.99	0.99	0.99	0.98	0.98	0.97	4.20
α, deg	54.99	60.01	65.01	68.48	70.0	0.05	14.05	10.00	27.80	20.00	21.75	24.00	24.93	26.75	39.90	5.14 5.25	10.04	147.77	74.95 9.95 9.95	59.98	64.98	68.12	0.07	0.05	0.01	-0.03	-0.05	14.99	14.96	14.93	14.88	14.88	24.8/	24.84	24.80	24.76	24.73	2.5 2.5	5.03	10.02	14.94	19.90	24.88	29.82	70:0
W	.301	0.300	0.300	0.299	0.500	0.301	0000	0.200	0.297	0.20	300	0000	0000	0.290	0000	0.299	0000	0.770	7000	0.298	0.299	0.299	0.503	0.502	0.502	0.502	0.501	0.501	0.501	0.501	0.501	0.501	0.499	0.499	0.499	0.499	0.499	0.502	0.501	0.501	0.500	0.499	0.498	0.501	0.502

32

Table 8. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 25^{\circ}; \, \delta_{B,E} = -10^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

	Ç	$C_{l,a}$	-0.0003	-0.0001	0.0006	0.0003	0.0017	0.0012	0.0016	0.0010	-0.0004	-0.0005	0.0001	0.0000	-0.0005	-0.0002	0.0013	0.0021	0.0010	0.0003	-0.0002	-0.0010	0.0011	-0.0014	9000.0	0.0002	-0.0002	0.0000	-0.0005	0.0014	0.0011	0.0011	0.0017	0.0016	0.0027
	ţ	$C_{n,a}$	0.0012	-0.0014	-0.0007	5.0013	-0.0063	-0.0057	-0.0067	0.0008	-0.0017	-0.0012	-0.0011	0.0004	0.0010	0.0010	-0.0021	-0.0007	0.0008	-0.0004	0.0000	-0.0017	-0.0017	-0.0008	-0.0057	-0.0020	-0.0005	-0.0014	-0.0010	0.0004	0.0011	0.0007	0.0017	0.0017	-0.0023
C_l 0.0001 0.0002	ζ	C Y.a	-0.0049	900000	-0.0037	0.0010	0.0156	0.0128	0.0166	-0.0016	0.0007	-0.0010	-0.0007	-0.0019	-0.0038	-0.0037	0.0068	0.0027	-0.0014	0.0012	-0.0008	0.0020	0.0023	-0.0008	0.0152	0.0033	-0.0012	0.0015	0.0003	-0.0013	-0.0029	-0.0016	-0.0043	-0.0044	0.0071
C _n 0.0002 0.0000	Ç	C m,a	0.1071	0.0361	0.0404	0.0274	-0.1190	-0.1609	-0.1889	-0.2280	-0.3290	-0.3762	-0.4083	0.1073	0.0525	0.0024	-0.0618	-0.1432	-0.2286	-0.3134	-0.3558	-0.0113	-0.0681	-0.1264	-0.2096	-0.3214	-0.4149	-0.5105	-0.5434	0.1181	0.0810	0.0618	0.0695	0.0548	-0.0665
$C_{F,S}$ 0.0000 0.0004 0.0007	ţ	$C_{D,a}$	0.0229	0.0000	0.0116	0.0161	0.0129	0.0296	0.0415	0.0712	0.0758	0.0974	0.1093	0.0189	0.0171	0.0191	0.0244	0.0396	0.0712	0.1090	0.1325	0.0121	0.0171	0.0314	0.0417	0.0745	0.1190	0.1712	0.1913	0.0206	0.0252	0.0301	0.0333	0.0359	0.0204
C _m -0.0047 -0.0103	eristics	CL.a	-0.0731	-0.0133	-0.0246	0.0103	0.0749	0.1073	0.1264	0.1280	0.2116	0.2453	0.2685	-0.0737	-0.0342	-0.0040	0.0305	0.0728	0.1272	0.1706	0.1925	0.0165	0.0577	0.0937	0.1433	0.2145	0.2710	0.3169	0.3327	-0.0830	-0.0543	-0.0393	-0.0521	-0.0425	0.0297
C _{F.N} 0.0017 0.0043 0.0081	nance charact	7	-0.0003	0.0010	0.0024	0.0020	0.0027	0.0030	0.0041	0.0010	9000.0	0.0012	0.0025	0.0000	-0.0005	-0.0002	0.0013	0.0021	0.0010	0.0003	-0.0002	0.0014	0.0013	0.0010	0.0030	0.0026	0.0024	0.0024	0.0020	0.0014	0.0015	0.0017	0.0025	0.0025	0.0027
C_{Fj} -0.0122 -0.0254 -0.0390	alsive pertorn	رءً	0.0012	0.0010	0.0005	0.001	-0.0039	-0.0044	-0.0071	0.0008	0.0007	-0.0001	-0.0015	0.0004	0.0010	0.0010	-0.0021	-0.0007	0.0008	-0.0004	0.0000	-0.0021	-0.0020	-0.0011	-0.0060	-0.0024	-0.0009	-0.0017	-0.0015	0.0004	0.0020	0.0010	0.0015	0.0012	-0.0023
δ _y , deg 0.17 0.89 0.99	(b) Aeropropulsive performance characteristics	۲۷	-0.0049	0.0000	0.0024	0.0107	0.0162	0.0190	0.0284	-0.0016	0.0013	0.0051	0.0110	-0.0019	-0.0038	-0.0037	0.0068	0.0027	-0.0014	0.0012	-0.0008	0.0137	0.0140	0.0109	0.0270	0.0153	0.0108	0.0132	0.0121	-0.0013	-0.0027	0.0007	-0.0001	0.0011	0.0071
δ _p , deg 7.85 9.71 11.69		m)	0.1071	-0.0384	-0.1215	-0.0650	-0.1942	-0.3248	-0.4822	-0.2280	-0.4053	-0.5378	-0.6969	0.1073	0.0525	0.0024	-0.0618	-0.1432	-0.2286	-0.3134	-0.3558	-0.3004	-0.3568	-0.4154	-0.5011	-0.6168	-0.7101	-0.8003	-0.8354	0.1181	0.0544	0.0026	-0.0352	-0.0782	-0.0665
F _J F _i 0.6820 0.7533 0.7897	ز	C(D-F)	0.0229	-0.1934	-0.3868	0.0234	-0.1685	-0.3420	-0.5742	0.0712	-0.0921	-0.2348	-0.4347	0.0189	0.0171	0.0191	0.0244	0.0396	0.0712	0.1090	0.1325	-0.6546	-0.6338	-0.6004 -0.6004	-0.5709	-0.5165	-0.4375	-0.3374	-0.3078	0.0206	0.0440	-0.1157	-0.2079	-0.2648	0.0204
F _I F _i 0.6885 0.7643 0.8065	Ç	75	-0.0731	0.0133	0.0434	0.0345	0.1515	0.2780	0.4384	0.1280	0.3200	0.4746	0.6755	-0.0737	-0.0342	-0.0040	0.0305	0.0728	0.1272	0.1706	0.1925	0.1568	0.2549	0.3475	0.4532	0.5815	0.6875	0.7717	0.8057	-0.0830	-0.0447	-0.0143	-0.0012	0.0249	1670.0
NPR 2.01 3.01 4.02	ddN	4	1.00	2.01	2.99	07:4	2.02	3.01	4.27	66.0	2.02	3.00	4.27	1.00	0.1	1:00	9.	0.99	0.99	0.99	0.00	4.23	5.5	4.24	4.25	4.26	4.26	4.27	4.26	0.99	5.00	3.01	4.25	5.01	0.98
	5 5 5	u, ucg	0.03	-0.01	0.01	15.02	15.00	14.95	14.90	24.96	24.92	24.91	24.83	9.0	5.01	10.03	14.98	20.00	24.98	29.94	32.51	6. 2.5	3. 5 3. 5	9.94	14.88	19.87	24.85	29.83	31.50	0.0	0. 2	0.02	6. 8.	0.01	14.98
	Z	•	0.301	0.300	0.300	0.300	0.300	0.300	0.299	0.299	0.299	0.301	0.302	0.300	0.301	0.300	0.300	0.299	0.300	0.298	0.298	0.299	0.300	0.300	0.299	0.298	0.298	0.301	0.299	0.500	0.500	0.499	0.499	0.499	0.501

	$C_{l,a}$	0.0022	0.0021	0.0021	0.0023	9000:0	0.0003	0.0003	9000'0	0.0000	0.0015	0.0010	0.0000	0.0027	0.0014	0.0004	0.0002	0.0007	0.0003	-0.0002	0.0021	6000.0	0.0007	0.0005
	$C_{n,a}$	-0.0031	-0.0033	-0.0024	-0.0021	0.0017	0.0007	0.0007	0.0014	0.0016	0.0008	0.0010	0.0009	-0.0016	0.0005	0.0017	-0.0002	-0.0003	-0.0002	0.0003	-0.0027	-0.0002	0.0010	-0.0005
	$C_{Y,a}$	0.0094	0.0100	0.0073	9900.0	-0.0054	-0.0035	-0.0038	-0.0061	-0.0065	-0.0027	-0.0036	-0.0030	0.0048	-0.0016	-0.0060	0.0003	-0.0007	-0.0013	-0.0030	9900'0	-0.0017	-0.0055	-0.0008
	$C_{m,a}$	-0.1131	-0.1379	-0.1577	-0.1743	-0.2475	-0.3035	-0.3322	-0.3523	-0.3730	0.1185	0.0641	0.0103	-0.0654	-0.1611	-0.2476	-0.3327	0.0539	-0.0019	-0.0589	-0.1572	-0.2550	-0.3513	-0.4439
	$C_{D,a}$	0.0294	0.0386	0.0448	0.0481	0.0765	0.0853	0.0971	0.1046	0.1127	0.0213	0.0175	0.0178	0.0204	0.0418	0.0763	0.1173	0.0190	0.0179	0.0233	0.0325	0.0592	0.1015	0.1488
	$C_{L,a}$	0.0642	0.0818	0.0953	0.1059	0.1453	0.1878	0.2067	0.2191	0.2317	-0.0838	-0.0448	-0.0115	0.0277	0.0899	0.1446	0.1900	-0.0377	0.0023	0.0374	0.0978	0.1601	0.2195	0.2687
ncluded	C_I	0.0025	0.0028	0.0030	0.0033	9000.0	0.0007	0.0010	0.0015	0.0019	0.0015	0.0010	0.000	0.0027	0.0014	0.0004	0.0002	0.0016	0.0012	0.0007	0.0030	0.0017	0.0017	0.0014
Table 8. Concluded	ر"	-0.0023	-0.0029	-0.0025	-0.0025	0.0017	0.0016	0.0011	0.0013	0.0010	0.0008	0.0010	0.0009	-0.0016	0.0005	0.0017	-0.0002	-0.0005	-0.0003	0.0002	-0.0028	-0.0003	0.0008	-0.0007
	C_{Y}	9600.0	0.0122	0.0115	0.0120	-0.0054	-0.0033	-0.0016	-0.0019	-0.0011	-0.0027	-0.0036	-0.0030	0.0048	-0.0016	-0.0060	0.0003	0.0035	0.0029	0.0012	0.0109	0.0025	-0.0013	0.0035
	<i>C</i>	-0.1396	-0.1973	-0.2635	-0.3059	-0.2475	-0.3302	-0.3908	-0.4564	-0.5051	0.1185	0.0641	0.0103	-0.0654	-0.1611	-0.2476	-0.3327	-0.0501	-0.1053	-0.1623	-0.2623	-0.3587	-0.4564	-0.5482
	$C_{(D-F)}$	-0.0347	-0.0960	-0.1772	-0.2226	0.0765	0.0265	-0.0235	-0.0924	-0.1309	0.0213	0.0175	0.0178	0.0204	0.0418	0.0763	0.1173	-0.2206	-0.2152	-0.2026	-0.1884	-0.1485	-0.0971	-0.0348
	C_L	0.0911	0.1435	0.2077	0.2464	0.1453	0.2255	0.2895	0.3655	0.4170	-0.0838	-0.0448	-0.0115	0.0277	0.0899	0.1446	0.1900	0.0131	0.0730	0.1285	0.2094	0.2886	0.3674	0.4321
	NPR	2.00	3.02	4.28	4.99	0.97	2.00	3.00	4.24	2.00	0.99	0.99	0.99	0.98	0.98	0.97	96.0	4.24	4.25	4.24	4.26	4.25	4.26	4.25
	a, deg	14.91	14.88	14.87	14.84	24.86	24.79	24.78	24.68	24.67	90.0	5.05	10.01	15.01	19.91	24.85	29.83	0.00	4.94	10.02	14.83	19.79	24.72	29.71
	W	0.501	0.500	0.500	0.500	0.499	0.500	0.500	0.499	0.500	0.501	0.500	0.500	0.498	0.500	0.499	0.498	0.500	0.502	0.502	0.499	0.502	0.499	0.500

Table 9. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \delta_{B,E} = 10^{\circ}; \delta_{C,F} = 10^{\circ}\right]$

NR					$C_{l,a}$	0.0000	0.0004	0.0003	0.000	0.0015	0.0006	0.0008	0.0012	0.0024	0.0022	-0.0003	0.0002	0.0014	0.0024	0.0014	0.0000	0.0002	0.0010	0.0008	0.0008	0.0010	0.0031	0.0028	0.0024	0.0010	0.0012	0.0010	0.0010	0.0030
NPR $F_{\rm c}/F_{\rm c} $ $F_{\rm c}/F_{\rm c}/F_{\rm c} $ $F_{\rm c}/F_{\rm c}/F_{\rm c} $ $F_{\rm c}/F_{\rm c}/F_{\rm c}/F_{\rm c} $ $F_{\rm c}/F_{\rm c}/F$					$C_{n,a}$	0.0005	-0.0017	-0.0017	-0.0017	-0.0037	-0.0029	-0.0023	0.0003	-0.0025	5.0017	0.0003	0.0002	-0.0018	-0.0017	0.0001	-0.0013	0.0002	0.0000	-0.0003	0.0001	0.0017	00000	90000	0.0017	0.0013	9000.0	0.0006	0.000	-0.0036
NR F/F F/F F_{μ}		C_{I}	0.0000		$C_{Y,a}$	-0.0020	0.0026	0.0030	0.0059	0.0106	0.0073	0.0055	0.0000	0.00/0	0.0041	0.0009	-0.0006	0.0067	0.0058	0.0008	0.0044	0.0016	-0.0006	0.0005	0.0007	0.0050	-0.0022	-0.0019	-0.0064	-0.0050	-0.0033	-0.0036	0.0052	0.0099
NPR F_f/F_i		"	0.0002 0.0002 0.0001		$C_{m,a}$	0.1133	0.1077	0.1080	-0.0551	-0.0557	-0.0552	-0.0542	-0.2192	50204	-0.1987	0.0519	0.0043	-0.0564	-0.1378	-0.2188	0.3030	0.1070	0.1208	0.0608	0.0091	-0.1414	-0.1857	-0.2669	-0.3176	0.1221	0.1208	0.1219	0.0596	-0.0542
NPR $F_{\nu}F_{i}$ $F_{i}F_{j}$ S_{μ} deg S_{μ} deg $C_{F,\mu}$ $C_{F,\nu}$ $C_{F,\nu}$ 200 0.8875 -1.73 -1.41 -0.0139 -0.0005 -0.0005 -0.0005 -0.018 -1.01 -0.34 -0.039 -0.0005 -0.0005 -0.018 -0.018 -0.019 -0.0005 -0.0005 -0.0005 -0.019 -0.039 -0.0005 -0.0005 -0.0005 -0.0005 -0.0009 -0.0005 -0.0009 -0.0005 -0.0009 -0.0000 -0.00000 -0.00000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.0000 -0.		$C_{F,S}$	-0.0004 -0.0002 0.0000		$C_{D,a}$	0.0165	0.0156	0.0212	0.0160	0.0166	0.0228	0.0250	0.0614	0.0349	0.0601	0.0117	0.0128	0.0170	0.0308	0.0620	0.0986	0.0126	0.0344	0.0312	0.0334	0.0493	0.0642	0.0940	0.1161	0.0216	0.0240	0.0268	0.0173	0.0142
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		C_m	0.0013 0.0019 0.0049	eristics	$C_{L,a}$	-0.0778	-0.0716	-0.0707	0.0285	0.0315	0.0307	0.0288	0.1240	0.1124	0.1032	-0.0320	-0.0044	0.0286	0.0714	0.1224	0.1681	-0.0733	-0.0837	-0.0394	0.0089	0.0718	0.0861	0.1270	0.1558	-0.0875	-0.0866	-0.0871	0.0246	0.0210
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		$C_{F,N}$	-0.0005 -0.0005 -0.0015	nance charact	c_l	0.0000	-0.0003	0.0005	0.0011	0.0008	-0.0002	-0.0010	0.0012	0.001/	0.0006	-0.0003	0.0002	0.0014	0.0024	0.0014	0.000	0.0002	-0.0007	-0.0009	5000 0000 0000 0000	00000	0.0015	0.0011	0.0007	0.0010	0.0010	0.0008	0.0025	0.0027
$\begin{array}{cccccccccccccccccccccccccccccccccccc$	•	$C_{F,j}$	-0.0158 -0.0309 -0.0488	ulsive perforn	<i>"</i>	0.0005	0.0017	0.0000	-0.0017	-0.0003	-0.0002	-0.0005	0.0003	0.000	0.0000	0.0003	0.0002	-0.0018	-0.0017	0.0001	-0.0013	-0.0002	0.0017	0.0015	0.0018	0.0000	0.0025	0.0024	0.0033	0.0013	0.0018	0.0016	-0.0018	-0.0024
$\begin{array}{cccccccccccccccccccccccccccccccccccc$		δ_{y} , deg	-1.41 -0.34 0.04	(b) Aeropropi	C_Y	-0.0020	-0.0036	0.0001	0.0059	0.0044	0.0043	0.0061	0.0000	0.000	0.0050	-0.0009	-0.0006	0.0067	0.0058	0.0008	0.0044	0.0004	0.0001	0.0010	0.0002	0.0056	-0.0016	-0.0014	-0.0059	-0.0050	-0.0055	-0.0046	0.0052	0.0077
NPR F_f/F_i 2.00 0.8882 3.00 0.9253 4.23 0.9185 4.23 0.9185 6.300 0.01 1.00 -0.079 6.300 0.03 2.00 -0.079 6.300 0.03 2.00 -0.079 6.300 0.03 3.00 -0.079 6.300 15.01 1.00 0.0285 6.299 15.01 2.00 0.0285 6.299 15.01 2.00 0.0285 6.299 15.02 24.99 0.1498 6.299 24.99 0.99 0.1224 6.299 15.03 1.00 0.0286 6.300 25.00 4.25 0.2074 6.299 10.03 1.00 0.0286 6.300 25.00 4.25 0.0304 6.299 10.03 1.00 0.0286 6.300 25.00 4.25 0.0320 6.299 10.03 1.00 0.0286 6.300 25.00 4.26 0.1072 6.299 10.06 4.26 0.1072 6.299 10.06 4.26 0.1040 6.299 10.06 4.26 0.1040 6.299 15.03 4.27 0.2029 6.209 10.06 4.26 0.3956 6.209 25.01 4.26 0.3956 6.209 25.01 4.26 0.3956 6.209 0.10 3.02 0.0895 6.200 0.10 3.02 0.0895 6.200 0.11 4.98 0.99 0.0246 6.201 14.99 2.00 0.00417		δ_p , deg	-1.73 -1.01 -1.77		<i>C</i> ^m	0.1133	0.1277	0.1388	-0.0551	-0.0357	-0.0245	0.0251	-0.2192	- 10.1949 - 1701 - 1701	-0.1194	0.0519	0.0043	-0.0564	-0.1378	-0.2188	-0.3030	0.1070	0.2013	0.1403	0.0890	-0.0618	-0.1057	-0.1866	-0.2396	0.1221	0.1281	0.1332	-0.0596	-0.0470
M α, deg NPR 0.300 0.01 1.00 0.300 0.03 2.00 0.300 0.03 2.00 0.300 0.03 2.00 0.300 0.03 3.00 0.300 0.03 3.00 0.209 15.01 1.00 0.209 15.01 2.00 0.209 15.02 2.99 0.209 10.03 3.00 0.209 15.01 2.00 0.209 15.01 1.00 0.209 24.99 0.99 0.209 24.99 0.99 0.209 24.99 0.99 0.209 24.99 0.99 0.209 24.99 0.99 0.209 24.99 0.99 0.209 24.99 1.00 0.209 24.99 1.00 0.209 2.03 1.00 0.209 2.03 1.00 0.209 2.03 1.00 0.209 2.04 4.25 0.2		$F_f F_i$	0.8875 0.9251 0.9181		$C_{(D-F)}$	0.0165	-0.2359	-0.4692	0.0160	-0.2290	-0.4551	-0.7330	0.0614	-0.3928	-0.6569	0.0117	0.0128	0.0170	0.0308	0.0620	0.0960	0.0126	-0.7551	0.7490	-0.7451	-0.6922	-0.6570	-0.6022	-0.5436	0.0216	-0.0693	5775	0.0173	-0.0737
M α, deg 0.300 0.01 0.300 0.03 0.300 0.03 0.300 0.03 0.300 0.03 0.300 0.03 0.209 15.01 0.299 15.00 0.299 24.99 0.299 24.99 0.299 24.99 0.299 24.99 0.299 24.99 0.299 24.99 0.299 24.99 0.299 24.99 0.300 25.00 0.299 24.99 0.300 25.00 0.300 25.05 0.299 15.03 0.299 15.03 0.299 15.03 0.299 15.03 0.209 25.01 0.209 25.01 0.209 0.10 0.500 0.10 0.500 0.10 0.500 0.10 0.501 0.13 0.501 14.99		F_{μ}/F_{i}	0.8882 0.9253 0.9185		C_L	-0.0778	-0.0790	-0.0792 -0.101 5	0.0285	0.0894	0.1498	0.2074	0.1240	0.3076	0.4109	-0.0320	0.004	0.0286	0.0714	0.1224	0.1933	-0.0733	-0.1072	0.0051	0.2029	0.3157	0.3956	0.4993	0.5497	-0.0875	-0.0892	0000 0000 0000 0000	0.0246	0.0417
A 0.299 0.29		NPR	2.00 3.00 4.23		NPR	1.00	9.5	3.00 4.24	1.00	2.00	2.99	4.25	0.90 0.90	3.00	4.25	1.00	1.00	1.00	00:	8 8	0.99	1.00	4.26	4.25	4.20	4.26	4.26	4.25	4.25	0.99	2.03	3.02 4.26	0.99	2.00
					α, deg	0.01	0.03	0.03	15.01	15.01	15.00	15.05	24.95	24.99	25.00	5.04	10.03	15.01	19.96	26.95	32.60	0.03	0.00	5.05	15.03	20.00	25.01	29.93	32.62	0.12	0.10	0.10	14.98	14.99
					M	0.300	0.300	0.300	0.300	0.299	0.299	0.300	0.298	0.299	0.300	0.299	0.299	0.302	0.300	0.297	0.302	0.302	0.299	0.300	0.299	0.300	0.299	0.298	0.305	0.500	0.500	0.500	0.501	

$C_{l,a}$	0.0026	0.0024	0.0005	9000.0	0.0007	0.0010	0.0011	0.0010	90000	0.0007	0.0025	0.0011	0.0003	0.0001	0.0001	0.000	0.0001	0.0023	0.0014	0.0011	0.0012	0.0020	0.0019	0.0018	0.0009	0.0008	0.0017	0.0018	0.0017	0.0017	0.0017	0.0016	0.0012	0.0010	0.0016	0.0015	0.0008	0.0007	0.0005	0.0017	0.0018
$C_{n,a}$	-0.0036	-0.0035	0.0013	0.0003	0.0004	0.000	0.0010	0.0008	0.0010	0.0007	-0.0021	0.0006	0.0017	-0.0005	-0.0003	-0.0003	-0.0003	-0.0037	-0.0008	-0.0002	-0.0024	9000.0	0.0011	0.0012	0.0024	0.0024	0.0000	-0.0009	-0.0008	-0.0005	-0.0002	0.0011	0.0011	0.0011	0.0003	9000:0	9000.0	0.0005	0.0007	-0.0004	0.0001
$C_{Y,a}$	0.0098	0.0098	-0.0043	-0.0021	-0.0029	-0.0042	0.0044	-0.0030	-0.0036	-0.0026	0.0064	-0.0018	-0.0059	0.0022	-0.0001	0.004	-0.0003	0.0109	0.0019	-0.0005	0.0072	-0.0021	-0.0034	-0.0039	-0.0072	-0.0071	-0.0001	0.0021	0.0017	0.0009	0.0000	-0.0040	-0.0041	-0.0041	-0.0015	-0.0021	-0.0032	-0.0029	-0.0034	0.0005	-0.0008
C _{m,a}	-0.0524	-0.0565	-0.2427	-0.2454	-0.2451	-0.2399	-0.2312	0.1218	0.0679	0.0139	-0.0598	-0.1561	-0.2417	-0.3252	0.1124	0.0571	0.0053	-0.0560	-0.1436	-0.2319	-0.3227	0.1319	0.1318	0.1316	0.1272	0.1331	-0.0768	-0.0736	-0.0718	-0.0677	-0.0622	0.1305	0.0783	0.0246	-0.0749	-0.1603	0.1239	0.0713	0.0222	-0.0657	-0.1553
$C_{D,a}$	0.0171	0.0220	0.0728	0.0697	0.0728	0.0734	0.0722	0.0199	0.0161	0.0160	0.0186	0.0396	0.0731	0.1137	0.0259	0.0218	0.0219	0.0215	0.0381	0.0717	0.1129	0.0213	0.0232	0.0254	0.0257	0.0261	0.0206	0.0178	0.0196	0.0209	0.0197	0.0217	0.0163	0.0148	0.0205	0.0394	0.0244	0.0190	0.0175	0.0204	0.0396
$C_{L,a}$	0.0196	0.0268	0.1433	0.1474	0.1456	0.1397	0.1338	-0.0860	-0.0471	-0.0131	0.0252	0.0877	0.1420	0.1877	-0.0767	-0.0372	-0.0049	0.0233	0.0759	0.1327	0.1835	-0.0930	-0.0934	-0.0935	-0.0917	-0.0960	0.0391	0.0371	0.0352	0.0308	0.0275	-0.0933	-0.0556	-0.0220	0.0371	0.0910	-0.0877	-0.0497	-0.0193	0.0292	0.0859
C_l	0.0024	0.0015	0.0005	0.0003	0.0004	0.0003	0.0003	0.0010	9000.0	0.0007	0.0025	0.0011	0.0003	0.0001	-0.0005	9000'0-	-0.0005	0.0017	0.0008	9000.0	9000.0	0.0020	0.0018	0.0017	0.0005	0.0003	0.0017	0.0017	0.0017	0.0015	0.0013	0.0016	0.0012	0.0010	0.0016	0.0015	0.0004	0.0003	0.0002	0.0015	0.0015
<i>C</i> ,	-0.0026	0.0030	0.0013	0.0015	0.0014	0.0015	0.0014	0.0008	0.0010	0.0007	-0.0021	9000.0	0.0017	-0.0005	0.0003	0.0003	0.0003	-0.0030	-0.0002	0.0004	-0.0017	9000.0	0.0017	0.0017	0.0028	0.0027	0.0000	-0.0003	-0.0003	-0.0002	0.0000	0.0011	0.0011	0.0011	0.0003	9000.0	0.0010	0.0008	0.0010	-0.0001	0.0003
C_{Y}	0.0087	0.0107	-0.0043	-0.0043	-0.0039	-0.0040	-0.0035	-0.0030	-0.0036	-0.0026	0.0064	-0.0018	-0.0059	0.0022	0.0001	-0.0002	-0.0001	0.0111	0.0021	-0.0003	0.0074	-0.0021	-0.0046	-0.0045	-0.0071	9900.0-	-0.0001	0.0009	0.0012	0.0010	0.0005	-0.0040	-0.0041	-0.0041	-0.0015	-0.0021	-0.0031	-0.0028	-0.0033	90000	-0.0007
<i>ر</i> "	-0.0415	-0.0174	-0.2427	-0.2381	-0.2338	-0.2113	-0.1923	0.1218	0.0679	0.0139	-0.0598	-0.1561	-0.2417	-0.3252	0.1409	0.0856	0.0338	-0.0274	-0.1152	-0.2033	-0.2941	0.1319	0.1354	0.1373	0.1416	0.1532	-0.0768	-0.0698	-0.0661	-0.0531	-0.0422	0.1305	0.0783	0.0246	-0.0749	-0.1603	0.1384	0.0857	0.0369	-0.0511	-0.1406
$C_{(D-F)}$	-0.1525	-0.3129	0.0728	-0.0146	-0.0903	-0.1843	-0.2425	0.0199	0.0161	0.0160	0.0186	0.0396	0.0731	0.1137	-0.2534	-0.2582	-0.2554	-0.2528	-0.2272	-0.1869	-0.1354	0.0213	-0.0227	-0.0651	-0.1167	-0.1499	0.0206	-0.0281	-0.0685	-0.1186	-0.1513	0.0217	0.0163	0.0148	0.0205	0.0394	-0.1183	-0.1229	-0.1251	-0.1194	-0.0969
C_L	0.0618	0.1042	0.1433	0.1835	0.2177	0.2495	0.2668	-0.0860	-0.0471	-0.0131	0.0252	0.0877	0.1420	0.1877	-0.0850	-0.0212	0.0355	0.0878	0.1631	0.2430	0.3158	-0.0930	-0.0946	-0.0948	-0.0957	-0.1016	0.0391	0.0480	0.0571	0.0635	0.0668	-0.0933	-0.0556	-0.0220	0.0371	0.0910	-0.0918	-0.0415	0.0014	0.0619	0.1305
NPR	2.99	5.00	0.97	2.01	3.01	4.25	2.00	0.99	0.99	0.99	0.99	0.98	0.97	0.97	4.25	4.24	4.25	4.24	4.24	4.24	4.25	0.98	2.00	3.00	4.25	5.02	0.97	2.02	3.01	4.24	2.00	0.98	0.98	0.99	0.97	96.0	4.25	4.24	4.27	4.25	4.26
α, deg	14.99	15.03	24.89	24.87	24.86	24.85	24.92	0.05	5.05	10.02	14.99	19.97	24.86	29.81	0.08	5.0 <u>k</u>	10.01	15.01	19.96	24.89	29.85	0.13	0.19	0.19	0.15	0.21	14.96	14.96	14.98	14.97	14.97	0.12	5.11	10.02	14.93	19.87	0.14	5.09	10.01	14.98	19.87
M	0.501	0.499	0.500	0.499	0.500	0.501	0.501	0.501	0.499	0.500	0.498	0.501	0.498	0.498	0.501	0.499	0.501	0.498	0.501	0.499	0.500	0.699	0.701	0.699	0.701	0.700	0.699	0.699	0.699	0.699	0.699	0.701	0.699	0.701	0.701	0.701	0.701	0.701	0.700	0.699	0.700

Table 10. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 15^{\circ}; \, \delta_{C,F} = 15^{\circ}\right]$

		ن	0.0024	0.0021	0.0018	0.0019	0.0034	0.0026	0.0030	0.0017	0.0015	0.0018	0.0017	0.0017	0.0000	0.0035	0.0035	0.0045	0.0021	0.0026	0.0023	0.0024	0.0020	0.0019	0.0028	0.0034	0.0023	0.0026
		ر	0 00 11	0.0004	0.0001	6000	0.0003	0.0000	-0.0003	-0.0017	-0.0024	-0.0028	-0.0024	0.0017	0.000	-0.0007	-0.0020	-0.0035	-0.0040	-0.0057	-0.0037	-0.0036	-0.0019	0.0014	-0.0003	-0.0010	-0.0037	-0.0033
	C_l -0.0001 -0.0001	ڻ	b, 1 - 7,000 0	-0.0040	0.0030	0.0034	-0.0017	-0.0014	-0.0007	0.0050	0.0057	0.0082	0.0065	0.0042	0.0030	0.0031	0.0070	0.0113	0.0107	0.0145	0.0083	0.0076	0.0020	-0.0076	-0.0009	0.0012	0.0075	0.0070
	<i>C_n</i> 0.0000 -0.0001	Ċ	-0.5125	-0.5183	-0.5217	0.5150	-0.5985	-0.5912	-0.5914	-0.3878	-0.4267	-0.4551	-0.4856	0.5666	-0.5850	-0.6042	-0.6688	-0.7136	-0.3729	-0.4222	-0.4504	-0.4822	-0.5128	-0.5525	-0.5806	-0.5913	-0.6123	-0.6244
	$C_{F,S}$ 0.0000 0.0004	Ç	0.2597	0.2585	0.2578	0.3878	0.3803	0.3728	0.3675	0.1463	0.1790	0.2034	0.2294	0.2007	0.3542	0.3877	0.4469	0.4871	0.1376	0.1727	0.1931	0.2194	0.2495	0.2955	0.3374	0.3672	0.4004	0.4176
eristics	C _m 0.0026 0.0055 0.0093 teristics	C.	0.2518	0.2516	0.2508	0.1979	0.1971	0.1940	0.1978	0.2154	0.2291	0.2386	0.2489	0.2514	0.2265	0.1974	0.1782	0.1608	0.1973	0.2166	0.2259	0.2380	0.2446	0.2431	0.2299	0.1981	0.1671	0.1430
(a) Static $(M = 0)$ performance characteristics	δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_m 0.15 -0.0161 -0.0012 0.002 0.33 -0.0306 -0.0026 0.005 0.55 -0.0438 -0.0045 0.009	C	0.0024	0.0010	0.0005	0.0038	0.0024	0.0013	0.0014	0.0017	0.0015	0.0018	0.0017	0.001	0.0037	0.0035	0.0035	0.0045	0.0004	0.0010	0.0006	0.0007	0.0003	0.0002	0.0010	0.0017	0.0005	0.0009
(=0) perform	C _{F,j} -0.0161 -0.0306 -0.0438 ulsive perfon	ڻ	-0.0011	0.0002	0.0010	-0.0008	0.0001	-0.0009	-0.0026	-0.0017	-0.0024	-0.0028	0.0024	0.0017	-0.0007	-0.0007	-0.0020	-0.0035	-0.0063	8/00/s	-0.0059	-0.0058	-0.0042	-0.0009	-0.0026	-0.0033	-0.0059	-0.0056
(a) Static (M	δ _y , deg 0.15 0.33 0.55 (b) Aeroprop	ڻ	0.0027	-0.0033	0.0003	0.0034	-0.0010	0.0013	0.0069	0.0050	0.0057	0.0082	0.0063	-0.0036	0.0029	0.0031	0.0070	0.0113	0.0183	0.0220	0.0159	0.0152	9600.0	0.0001	0.0067	0.0088	0.0152	0.0148
	δ _p , deg -4.35 -4.93 -5.87		-0.5125	-0.4775	-0.4358	-0.6056	-0.5576	-0.5052	-0.4301	-0.3878	-0.4267	-0.4551	0.4630	-0.5666	-0.5850	-0.6042	-0.6688	-0.7136	-0.2127	-0.2614	-0.2898	-0.3208	-0.3517	-0.3897	-0.4205	-0.4284	-0.4488	-0.4599
	F _J F _i 0.9259 0.9186 0.9071	Cn - Fi	0.2597	0.0649	-0.3288	0.3878	0.2359	0.0989	-0.0711	0.1463	0.1790	0.2034	0.2607	0.3156	0.3542	0.3877	0.4469	0.4871	0.5102	0.458/	-0.4232	-0.3852	-0.3303	-0.2466	-0.1488	-0.0764	0.0101	0.0643
	F,F _i 0.9286 0.9220 0.9119	5	0.2518	0.4178	0.7149	0.1979	0.4085	0.5863	0.8008	0.2154	0.2291	0.2386	0.2469	0.2508	0.2265	0.1974	0.1782	0.1608	0.558/	0.0103	0.0411	0.6767	0.7136	0.7663	0.7879	0.8081	0.8155	0.8174
	NPR 1.98 3.03 4.00	NPR	0.98	1.97	42.4 42.4	0.97	1.97	3.00	4.25	0.99 0.99	86.0 86.0	6.0 0.0	0 0 0 0	0.98	0.97	0.97	0.97	76.0	47.7	47.7	47.7	4.24	4.24	4.24	4.25	4.24	4.24	4.24
		α, deg	44.98	44.99 8.99	45.02	60.02	60.03	59.99	59.99	35.24	38.01	20.03	42.02	49.98	55.03	60.02	65.01	68.24	17.00	07.70	59.99	41.98	2. 2.	50.00	24.96	59.99	64.97	68.37
		W	0.298	0.299	0.301	0.299	0.299	0.301	0.301	0.301	0.301	0.301	0300	0.300	0.298	0.301	0.299	0.298	0.302	0.301	0.302	0.301	0.301	0.299	0.303	0.299	0.299	0.298

Table 11. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 20^{\circ}; \, \delta_{C,F} = 20^{\circ}\right]$

	C _{1,a} -0.0013 -0.0003 -0.0003 -0.0003 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0004 -0.0007 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009 -0.0009	0.0003 0.0003 0.0023
	C _{n,a} 0.0023 0.0023 0.0023 0.0023 0.0023 0.0024 0.0024 0.0026 0.0026 0.0003 0.0017 0.0019 0.0013 0.0003 0.0003	0.0022 0.0018 0.0017
C ₁ 0.0000 -0.0001 -0.0001	0.0025 0.0025 0.0026 0.0028 0.0038 0.0038 0.0038 0.0038 0.0038 0.0010 0.0029 0.0011 0.0025 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029 0.0029	-0.0085 -0.0078 0.0049
<i>C</i> , 0.0002 0.0001 0.0000	Cm.a 0.1101 0.1297 0.1437 0.1553 0.0595 0.0307 0.232 0.232 0.0538 0.0033 0.0033 0.0033 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1076 0.1077 0.1375 0.1375 0.1375 0.1375 0.1347 0.1340	0.1430 0.1445 -0.0661
CF.S 0.0000 0.0003 0.0006	C _{D,d} 0.0255 0.0282 0.0345 0.0345 0.0363 0.0169 0.0199 0.0295 0.0627 0.0627 0.0627 0.0635 0.0305 0.0311 0.0371 0.0358 0.0377 0.0358 0.0377 0.0358 0.0377 0.0358 0.0371 0.0371 0.0371 0.0371 0.0372	0.0238 0.0246 0.0165
C _m 0.0062 0.0116 0.0178 eristics	$C_{L,a}$ $C_{L,a}$ 0.0750 0.0880 0.0980 0.0980 0.01313 0.0254 0.01283 0.1187 0.1187 0.1187 0.1485 0.01283 0.1187 0.01283 0.01283 0.01283 0.01283 0.01283 0.01283 0.0020 0.00310 0.0712 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345 0.00345	-0.0996 -0.1016 0.0318
δ_{y} , deg C_{Fj} $C_{F,N}$ C_{m} 0.15 -0.0123 -0.0033 0.006 0.64 -0.0249 -0.0059 0.011 0.85 -0.0381 -0.0089 0.017 (b) Aeropropulsive performance characteristics	C ₁ -0.0013 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003 -0.0003	0.0003 0.0003
C_{Fj} -0.0123 -0.0249 -0.0381	C _n 0.0023 0.0023 0.0051 0.0044 0.0044 0.0003 0.00044 0.0003 0.00012 0.0003 0.00013 0.00013 0.00014 0.0004 0.0004	0.0021 0.0015 -0.0017
δ _y , deg 0.15 0.64 0.85 (b) Aeropropi	C_{χ} C_{χ	0.0049 0.0049
δ_p , deg -15.10 -13.31 -13.17	C _m 0.1101 0.2290 0.3288 0.4610 0.0529 0.0529 0.0529 0.0529 0.0529 0.0538 0.0609 0.1076 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633 0.0633	0.2513 0.2787 -0.0661
FJF _i 0.6963 0.7569 0.7761	$C_{(D-F)}$ 0.0255 0.0255 0.1685 0.1685 0.1685 0.0169 0.0169 0.0169 0.01320 0.0333 0.02624 0.02624 0.0332 0.0509	-0.2089 -0.2641 0.0165
F,/F _i 0.7212 0.7778 0.7972	C_L	-0.1535 -0.1680 0.0318
NPR 2.00 2.99 4.02	NPR 1.00 1.100 1.00 1.00 1.00 1.00 1.00 1.	5.00 0.99
	α, deg 0.01 0.01 0.05 0.01 0.05 0.001 0.05 0.001 0.005 0.008 0.005 0.008 0.005 0.00	0.11 0.13 14.97
	0.300 0.299 0.299 0.299 0.299 0.300 0.299 0.300 0.300 0.300 0.300 0.300 0.299 0.300 0.299 0.300 0.299 0.299 0.299	0.501 0.501 0.501

$C_{L,a}$	70000	0.0015	0.0010	0.0008	0.0003	0.0005	0.0005	0.0006	0.0007	0.000	0.0005	0.0005	0.0024	0.0011	0.0004	0.0002	0.0007	0.0007	0.0008	0.0018	0.0017	0.0018	0.0016	0.0016	0.0015	0.0013	0.0011	0.0010	0.0015	0.0017	0.0017	0.0014	0.0012	0.0010	0.0016	0.0012	0.0010	0.0016	0.0014	0.0011	0.0010	0.0010	0.0017	0.0020
$C_{n,a}$	0.0032	-0.0024	-0.0020	-0.0018	0.0016	0.0007	0.0010	0.0014	0.0016	0.0005	0.0007	0.0005	-0.0020	0.0004	0.0014	-0.0008	0.0012	0.0011	0.0010	-0.0017	0.0001	0.0017	0.0001	0.0008	0.0014	0.0016	0.0017	0.0017	0.0003	-0.0003	-0.0001	0.0002	0.0002	0.0003	0.0010	0.0010	0.0010	0.0003	0.0009	0.0017	0.0017	0.0022	0.0010	0.0012
$C_{Y,a}$	0000	0.0053	0.0036	0.0029	-0.0052	0.0044	-0.0053	-0.0070	-0.0075	-0.0020	-0.0026	-0.0019	0.0062	-0.0011	-0.0045	0.0029	-0.0045	-0.0041	-0.0035	0.0048	-0.0001	-0.0059	0.0001	-0.0027	-0.0053	-0.0060	-0.0067	-0.0069	-0.0013	-0.0001	-0.0008	-0.0019	-0.0020	-0.0028	-0.0036	-0.0038	-0.0038	-0.0014	-0.0026	-0.0065	-0.0063	-0.0075	-0.0037	-0.0044
$C_{m,a}$	70 0636	-0.0648	-0.0617	-0.0624	-0.2451	-0.2419	-0.2346	-0.2291	-0.2302	0.1160	0.0627	0.0093	-0.0656	-0.1585	-0.2444	-0.3284	0.1469	0.0901	0.0362	-0.0489	-0.1355	-0.2029	-0.3029	0.1255	0.1289	0.1356	0.1441	0.1463	-0.0788	-0.0715	-0.0661	-0.0718	-0.0748	-0.0768	0.1257	0.0754	0.0218	-0.0784	-0.1644	0.1443	0.0908	0.0410	-0.0635	-0.1384
$C_{D,a}$	0.0087	0.0124	0.0158	0.0157	0.0720	0.0627	0.0635	0.0627	0.0630	0.0167	0.0136	0.0138	0.0169	0.0374	0.0717	0.1122	0.0284	0.0222	0.0210	0.0249	0.0410	0.0665	0.1087	0.0190	0.0176	0.0188	0.0211	0.0213	0.0191	0.0135	0.0143	0.0177	0.0180	0.0187	0.0196	0.0147	0.0134	0.0193	0.0388	0.0233	0.0168	0.0154	0.0205	0.0351
$C_{L,a}$	0.0357	0.0387	0.0373	0.0377	0.1471	0.1494	0.1432	0.1381	0.1383	-0.0804	-0.0417	-0.0081	0.0314	0.0911	0.1462	0.1919	-0.1038	-0.0628	-0.0280	0.0225	0.0738	0.1095	0.1675	-0.0883	-0.0910	-0.0959	-0.1019	-0.1041	0.0413	0.0378	0.0335	0.0397	0.0426	0.0441	-0.0889	-0.0525	-0.0192	0.0406	0.0950	-0.1024	-0.0638	-0.0328	0.0314	0.0740
C'	0.0023	0.0012	0.0004	0.0000	0.0003	0.0004	0.0003	0.0001	-0.0001	0.000	0.0005	0.0005	0.0024	0.0011	0.0004	0.0002	0.0002	0.0001	0.0003	0.0012	0.0011	0.0012	0.0010	0.0016	0.0014	0.0012	0.0009	9000.0	0.0015	0.0016	0.0016	0.0011	0.0008	0.0005	0.0016	0.0012	0.0010	0.0016	0.0014	0.0000	0.0008	0.0006	0.0014	0.0017
ڻ'	-0.0024	-0.0019	-0.0020	-0.0022	0.0016	0.0016	0.0014	0.0014	0.0012	0.0005	0.0007	0.0005	-0.0020	0.0004	0.0014	-0.0008	0.0011	0.0010	0.0010	-0.0017	0.0000	0.0017	0.0001	0.0008	0.0017	0.0018	0.0017	0.0016	0.0003	0.0001	0.0001	0.0002	0.0000	00000	0.0010	0.0010	0.0010	0.0003	0.0009	0.0017	0.0017	0.0022	0.0010	0.0012
C_{Y}	0.0083	0.0069	0.0072	0.0077	-0.0052	-0.0042	-0.0037	-0.0034	-0.0027	-0.0020	-0.0026	-0.0019	0.0062	-0.0011	-0.0045	0.0029	60000	-0.0005	0.0001	0.0084	0.0035	-0.0022	0.0037	-0.0027	-0.0052	-0.0052	-0.0048	-0.0045	-0.0013	0.0000	0.0000	-0.0001	0.0005	0.0003	0.0030	0.0038	-0.0038	-0.0014	-0.0026	-0.0047	-0.0045	-0.0057	-0.0019	-0.W23
C,,	-0.0284	0.0015	0.0471	0.0705	-0.2451	-0.2063	-0.1680	-0.1196	-0.0953	0.1160	0.0627	0.0093	-0.0656	-0.1585	-0.2444	-0.3284	0.2554	0.1993	0.1448	0.0599	-0.0256	-0.0935	-0.1927	0.1255	0.1473	0.1700	0.2000	0.2155	-0.0788	-0.0533	-0.0317	-0.0155	-0.0058	0.0050	0.1237	0.0734	0.0218	40.07	-0.1644	0.2002	0.1460	0.0963	0.00/2	1700.0-
$C_{(D-F)}$	-0.0634	-0.1332	-0.2242	-0.2776	0.0720	0600.0-	-0.0800	-0.1736	-0.2285	0.0167	0.0136	0.0138	0.0169	0.0374	0.0717	0.1122	-0.2050	-0.2164	-0.2182	-0.2151	-0.1997	-0.1698	-0.1239	0.0190	-0.0190	-0.0549	0.0990	-0.1275	0.0191	-0.0240	-0.0613	0.1065	-0.1343	0.1619	0.0196	0.0147	0.0134	0.0193	0.0388	0/60:0	-0.1038	- 1063 - 1083	-0.1029 -0.0871	1.00.7
C_L	0.0355	0.0430	0.0450	0.0474	0.1471	0.1617	0.1726	0.1872	0.1993	-0.0804	0.0417	-0.0081	0.0314	0.0911	0.1462	0.1919	-0.1577	-0.0967	0.0408	0.0303	0.1025	0.1586	0.2375	-0.0883	-0.1007	-0.1131	-0.1297	-0.1382	0.0413	0.0377	0.0357	0.0437	0.0475	0.050.0	0.0635	0.0323	2610.0-	0.0400	0.0950	-0.1301	0.0808	-0.0393	0.0353	0.0004
NPR	1.99	2.99	4.26	4.98	0.98	1.99	3.00	4.24	5.00	0.99	0.99	1:00	0.99	0.99	0.98	0.97	4.25	4.25	4.25	4.24	4.24	4.25	4.25	0.99	5.00	3.01	4.26	5.03	0.98	2.00	3.01	4.27	2.00 2.70	د/.د در دو	0.77	60.0	60.0	0.70	76.0	C7.4	4.22	C2.4	4.25 4.25	t. 7
α, deg	14.98	14.99	14.98	14.99	24.85	24.86	24.89	24.89	24.92	0.05	5.03	86.6	14.96	19.89	24.83	29.79	0.14	2.06	10.09	15.02	19.95	24.89	29.88	0.13	0.16	0.19	0.16	0.21	14.90	14.96	14.97	10.01	2.50	86.7	0.03 11	10.01	20.02	14.92	4.84	0.18	5.12	10.11	19.80	17.07
W	0.501	0.502	0.502	0.502	0.500	0.500	0.502	0.499	0.499	0.499	0.501	0.502	0.499	0.500	0.500	0.498	0.502	0.500	0.501	0.500	0.498	0.499	0.498	0.700	969.0	0.700	0.700	0.700	0.700	0.699	0.699	0.699	0.699	0.099	3 5	36.0	0.701	3 5	0.099	0.098	0.700	70/.0	0.699	0.077

Table 12. Static and Aeropropulsive Performance Characteristics at Afterburning Power

		$C_{l,a}$	-0.0004	0.0000	0.0007	-0.0002	0.0006	6000	0.0001	0.0015	-0.0004	-0.0012	0.0029	0.0024	0.0022	0.0021	0.0044	0.0041	0.0036	0.0039	0.0002	-0.0002	0.000	0.0010	0.0010	0.0000	0000	0.0002	0.0024	0.0021	0.0027	0.0021	0.0013
		$C_{n,a}$	0.0010	-0.0003	-0.0008	-0.0035	-0.0065	0.0038	-0.0017	-0.0080	-0.0069	-0.0065	-0.0008	-0.0011	-0.0031	-0.0053	90000	-0.0011	-0.0022	-0.0037	-0.0001	0.0002	0.0003	0.0032	0.007	-0.0013	0.003	0000	-0.0034	-0.0034	-0.0039	-0.0015	0.0003
C ₁ -0.0001 -0.0002		$C_{Y,a}$	-0.0036	0.0017	0.0031	0.0109	0.0211	0.0192	0.0053	0.0276	0.0236	0.0224	0.0022	0.0016	0.0080	0.0153	0.0035	0.0038	0.0075	0.0127	0.0011	-0.0001	-0.001	0.0109	0.0039	0.002	0110	0.000	0.0095	0.0033	0.0123	0.0037	-0.0022
C _n 0.0003 0.0002 0.0002		$C_{m,a}$	0.1099	0.1554	0.1621	-0.0702	-0.0694	-0.0349	-0.2484	-0.2405	-0.2613	-0.2747	-0.5126	-0.5197	-0.5156	-0.5224	-0.6028	-0.5998	-0.6011	0909:0-	0.1072	0.0523	-0.001/	0.0074	5,1373	03200	0.2230	10.3826	-0.4216	0.4210	-0.4812	-0.5091	-0.5635
$C_{F,S}$ -0.0004 -0.0003		$C_{D,a}$	0.0181	0.0338	0.0352	0.0128	0.0261	0.0273	0.0680	0.0825	0.0976	0.1056	0.2583	0.2564	0.2527	0.2522	0.3847	0.3754	0.3726	0.3690	0.0149	0.0112	0.0103	0.0121	0.0201	0.007	0.1196	0.1160	0.1742	0.1977	0.2249	0.2556	0.3116
C _m 0.0072 0.0140 0.0199	eristics	$C_{L,a}$	-0.0790	-0.1122	-0.1170	0.0411	0.0434	0.0355	0.1462	0.1360	0.1581	0.1678	0.2543	0.2548	0.2490	0.2517	0.1992	0.2027	0.2040	0.2089	-0.0760	-0.0349	0.0002	0.0371	0.0500	0.1430	0.17.0	0.2130	0.2275	0.2362	0.2474	0.2497	0.2506
$C_{F,N}$ -0.0036 -0.0070 -0.0100	(b) Aeropropulsive performance characteristics	c'	-0.0004	-0.0007	-0.0017	-0.0002	-0.0017	0.0020	0.0001	0.0004	-0.0019	-0.0037	0.0029	0.0008	-0.0003	-0.0017	0.0044	0.0025	0.0010	0.0002	0.0002	-0.0002	0.000	0.0010	0.0010	0.0000	0000	0.002	0.0024	0.0024	0.0027	0.0021	0.0013
$C_{F,j}$ -0.0118 -0.0239 -0.0359	ılsive perfom	ر"	0.0010	0.0030	0.0024	-0.0035	-0.0030	-0.0024 -0.0018	-0.0017	-0.0046	-0.0036	-0.0035	-0.0008	-0.0002	-0.0023	-0.0057	9000.0	-0.0001	-0.0013	-0.0042	-0.0001	0.0002	0.0003	0.0032	0.002/	0.0013	0.0035	0.003	-0.0034	0.0034	-0.0039	-0.0015	0.0003
δ _y , deg -1.84 -0.79 -0.45	(b) Aeropropu	C_{Y}	-0.0036	-0.0036	-0.0012	0.0109	0.0151	0.0140	0.0053	0.0216	0.0183	0.0181	0.0022	-0.0016	0.0048	0.0159	0.0035	9000:0	0.0043	0.0133	0.0011	-0.0001	0.001	0.0109	0.003	0.002	01100	0.000	0.0095	0.003	0.0123	0.0037	-0.0022
δ_p , deg -16.96 -15.61		ر"	0.1099	0.3782	0.5005	-0.0702	0.0455	0.1030	-0.2484	-0.1269	-0.0399	0.0660	-0.5126	-0.4098	-0.3004	-0.1909	-0.6028	-0.4896	-0.3873	-0.2775	0.1072	0.0523	-0.001/	0.1570	0.7730	03290	0.2230	-0.3876	-0.4216	0.4210	-0.4812	-0.5091	-0.5635
F _J F _i 0.6640 0.7201 0.7404		$C_{(D-F)}$	0.0181	-0.3481	-0.5814	0.0128	-0.1700	-0.3030	0.0680	-0.1094	-0.2927	-0.5305	0.2583	0.0585	-0.1170	-0.3252	0.3847	0.2142	0.0730	-0.0975	0.0149	0.0112	0.0103	0.0121	0.0577	0.0377	0.071	0.1180	0 1742	0.1977	0.2249	0.2556	0.3116
F_i/F_i 0.6946 0.7503 0.7688		c_L	0.0790	-0.2231	-0.2873	0.0411	0.0368	0.0243	0.1462	0.1629	0.2171	0.2735	0.2543	0.3736	0.4619	0.5874	0.1992	0.3689	0.5039	0.6786	-0.0760	-0.0349	-0.0002 0.0371	0.0371	0.0900	0.1930	00100	0.2134	0.2275	0.2362	0.2474	0.2497	0.2506
NPR 2.00 3.01 3.99		NPR	1.00	3.01	4.23	1.00	2.00	5.00 4.24	66.0	2.00	3.00	4.26	86.0	1.99	2.99	4.21	0.97	1.99	2.98	4.21	90 5	3 3 3	3 5	3 5	3 6	8	000	0.99	860	86.0	0.08	0.98	86.0
		α, deg	0.01	0.10	0.07	14.97	15.03	15.03	24.95	24.95	24.90	24.93	45.01	45.09	44.98	44.98	59.99	90.09	80.09	60.01	0.01	9.00	5.5	10.06	24.02	20.00	22.73	35.33	38.02	30.02	42.02	45.03	49.96
		M	0.299	0.300	0.300	0.299	0.300	0.301	0.301	0.302	0.300	0.300	0.298	0.298	0.298	0.298	0.299	0.298	0.299	0.299	0.302	0.299	0.302	0.300	0.300	0.300	0.200	0.305	0300	0.300	0.299	0.299	0.298

$C_{l,a}$	0.0040	0.0041	0.0039	0.0049	0.0007	0.0007	0.0009	0.0009	0.0011	0.0010	0.0016	0.0017	0.0027	0.0024	0.0025	0.0023	0.0017	0.0030	0.0039	0.0044	0.0029	0.0002	0.0008	0.0005	0.0003	0.0002	0.0020	0.0021	0.0014	0.0009	0.0003	0.0003	0.000	0.000	0.000	-0.0002	-0.0002	0.0018	0.0004	-0.0002	-0.0003	0.0004	0.0004
$C_{n,a}$	-0 0007	90000	-0.0025	-0.0037	-0.0042	-0.0047	-0.0052	-0.0062	8/00.0	0.0061	-0.0081	0.0083	0006	-0.0068	-0.0076	-0.0063	-0.0032	6.004	-0.0041	-0.0040	-0.0084	0.0005	-0.0011	-0.0010	6000.0	-0.0007	-0.0037	-0.0056	-0.0053	-0.0051	-0.0050	0.0009	6.0018 6.0018	258	0.000	0.0007	0.0003	-0.0033	-0.0004	0.0008	-0.0017	-0.0004	-0.0004
$C_{Y,a}$	0.0032	0.0033	0.0000	0.0129	0.0147	0.0164	0.0179	0.0213	0.0203	0.0207	0.0269	0.0263	0.0228	0.0206	0.0233	0.0185	0.0092	0.0143	0.0135	0.0132	0.0241	-0.0014	0.0046	0.0037	0.0035	0.0029	0.0116	0.0176	0.0167	0.0162	0.0155	6700.0	0.0007	0.0049	0.0048	-0.0026	-0.0013	0.0103	0.0013	-0.0026	0.0058	0.0019	0.0018
$C_{m,a}$	-0.5822	-0.6022	-0.6657	-0.7084	0.1613	0.1004	0.0439	0.0243	0.1376	0.22.78	9215.0	0.3720	-0.4274	-0.4539	-0.4876	-0.5225	-0.5636	-0.5928	9909:0-	-0.6428	-0.6387	0.1104	0.1255	0.1358	0.1432	0.1412	-0.0739	-0.0735	-0.0733	0.0745	-0.0/52	0.2042	-0.2013	0.539	0.1100	0.0561	0.0044	-0.0748	-0.1737	-0.2628	-0.3441	0.1462	0.0879
$C_{D,a}$	0.3502	0.3852	0.4448	0.4825	0.0418	0.0348	0.0348	0.0532	0.0553	0.0651	0.1213	0.1512	0.1708	0.1920	0.2185	0.2517	0.2989	0.3398	0.3695	0.4121	0.4209	0.0173	0.0261	0.0294	0.0330	0.0330	0.0113	0.0145	0.0171	0.0201	0.0291	0.0007	0.0/16	0.0777	0.0178	0.0147	0.0152	0.0185	0.0312	0.0660	0.1051	0.0315	0.0253
$C_{L,a}$	0.2276	0.1994	0.1781	0.1610	-0.1181	-0.0738	-0.038/	0.000	0.0713	0.1272	0.1729	0.156	0.2229	0.2293	0.2417	0.2508	0.2500	0.2372	0.2085	0.1837	0.1523	-0.0771	-0.0905	-0.0976	-0.1034	-0.1030	0.0394	0.0413	0.0434	0.0452	0.0429	0.1631	0.1552	0.1543	-0.0764	-0.0373	-0.0048	0.0381	0.1056	0.1638	0.2107	-0.1059	-0.0637
C_I	0.0040	0.0041	0.0039	0.0049	0.0017	-0.0017	0.0016	0.0016	0.0013	0.0013	0.000	-0.0006	-0.0008	-0.0014	-0.0013	-0.0016	-0.0021	-0.0009	0.0002	0.0005	0.0010	0.0002	0.0003	-0.0001	-0.0005	-0.0009	0.0020	0.0017	0.0009	0.0001	0.0008	0.0003	0000	-0.0008	00000	-0.0002	-0.0002	0.0018	0.0004	-0.0002	-0.0003	0.0004	-0.0004
<i>C</i>	-0.0007	9000'0-	-0.0025	-0.0037	0.0010	0.0016	-0.0022	0.0031	0.0048	0.0030	0.0030	-0.0031	-0.0100	-0.0072	-0.0080	-0.0067	-0.0037	-0.0048	-0.0044	-0.0044	-0.0088	0.0005	0.0001	0.0003	0.0003	0.0004	-0.0037	-0.0043	-0.0041	-0.0040	0.0039	0.000	-0.0001	-0.0003	0.0008	0.0007	0.0003	-0.0033	-0.0004	0.0008	-0.0017	0.0007	0.0007
C_{Y}	0.0032	0.0033	0.0000	0.0129	0.0105	0.0121	0.0136	0.0171	0.0210	0.0100	0.0227	0.0222	0.0306	0.0213	0.0240	0.0193	0.0099	0.0150	0.0142	0.0139	0.0248	-0.0014	0.0024	0.0018	0.0019	0.0015	0.0116	0.0155	0.0148	0.0147	0.0142	0.002	0.0026	0.0033	-0.0027	-0.0026	-0.0013	0.0103	0.0013	-0.0026	0.0058	0.0004	0.0003
C,,,	-0.5822	-0.6022	-0.6657	-0.7084	0.4988	0.4416	0.3633	0.000	0.2020	0.1072	0.0135	-0.0657	-0.0983	-0.1245	-0.1570	-0.1904	-0.2289	-0.2594	-0.2808	-0.3102	-0.3029	0.1104	0.1670	0.2160	0.2666	0.2897	-0.0739	-0.0318	0.0067	0.0488	0.0731	-0.2205	-0.1746	-0.1312	0.1100	0.0561	0.0044	-0.0748	-0.1737	-0.2628	-0.3441	0.2693	0.2109
$C_{(D-F)}$	0.3502	0.3852	0.4448	0.4825	0.5/41	0.9001	0.0004	0.0033	0.5308	0.000	-0.4707	-0.4748	-0.4390	-0.4088	-0.3742	-0.3270	-0.2523	-0.1737	-0.0932	-0.0174	0.0225	0.0173	-0.0417	-0.1078	-0.1922	-0.2435	0.0113	-0.0367	-0.1255	0.2567	0.0567	0.002	9890.0	-0.1563	0.0178	0.0147	0.0152	0.0185	0.0312	0.0660	0.1051	-0.1930	-0.2038
C_L	0.2276	0.1994	0.1781	0.1610	0.2880	56.5	0.1001	0.0045	0.1216	0.3313	0.3038	0.4497	0.4842	0.5119	0.5464	0.5872	0.6388	0.6706	0.6747	0.6984	0.6993	-0.0771	-0.1110	-0.1375	-0.1654	0.1776	0.0394	0.0366	0.0401	0.0454	0.0410	0.1714	0.1763	0.1920	-0.0764	-0.0373	-0.0048	0.0381	0.1056	0.1638	0.2107	-0.1676	-0.1057
NPR	0.97	0.97	0.97	0.97	4.20	5.45 5.45 5.45	4.27 4.24	4.24	4.24	7.7	4 25	4.25	4.25	4.25	4.25	4.25	4.25	4.25	4.26	4.25	4.25	0.99	2.00	90.5	4.27	5.01	0.98	7.01	3.00	97.7 V	9.6	00	3.00	4.26	0.99	0.99	0.99	0.98	0.98	0.97	0.97	4.25	4.27
α, deg	54.99	59.99	65.03	68.42	0.00	20.05	15.05	20.00	24 98	20.0%	32.04	35.49	38.00	40.00	42.01	44.98	50.00	54.97	60.02	64.97	68.75	0.03	0.00	0.08	0.10	CI.D.	5.55	14.97	14.98	5 2 2	24.83	24.85	24.86	24.85	0.05	5.03	86.6	14.92	19.88	24.83	29.74	0.12	5.11
													_	_		_	~	_	~	_				_ ^							0.700	_	0.500			0.499	0.499	0.502	_	0.499	_	0.499	_

	$C_{l,a}$	0.0007	0.0015	0.0015	0.0016	0.0022
	$C_{n,a}$	-0.0009	-0.0047	-0.0021	-0.0003	-0.0035
	$C_{Y,a}$	0.0035	0.0154	0.0075	0.0012	0.0122
	$C_{m,a}$	0.0338	-0.0509	-0.1468	-0.2165	-0.3070
	$C_{D,a}$	0.0241	0.0265	0.0449	0.0701	0.1109
	$C_{L,a}$	-0.0286	0.0216	0.0797	0.1164	0.1679
ncluded	<i>c</i> ¹	-0.0002	9000:0	9000'0	0.0007	0.0013
Table 12. Conclude	ڻ	0.0003	-0.0037	-0.0010	0.0008	-0.0024
	C_{Y}	0.0019	0.0139	0.0060	-0.0003	0.0106
	$C_{\overline{\mathfrak{m}}}$	0.1557	0.0722	-0.0250	-0.0933	-0.1844
	$C_{(D-F)}$	-0.2055	-0.2065	-0.1849	-0.1599	-0.1138
	C_L	-0.0504	0.0198	0.0977	0.1545	0.2253
	NPR	4.25	4.27	4.26	4.26	4.25
	α, deg	10.08	15.05	19.98	24.90	29.83
	M	0.502	0.500	0.502	0.499	0.500

Table 13. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B} = 15^{\circ}; \, \delta_{E} = 10^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

(a) Static (M = 0) performance characteristics

		$C_{l,a}$	-0.0007	-0.0010	-0.0016	0.0002	0.0003	0.0002	0.0005	0.0010	0.0011	0.0012	0.0013	0.0010	0.000	0.000	0.0004	0.0016	0.0017	-0.0015	-0.0011	0.000	0.0001	0.0012	0.0013	0.0019	0.0023	0.000	0.0008	0.000	0.0009	0.0000	2000
		$C_{n,a}$	0.0001	0.0030	0.0048	0.0028	0.001	0.0003	-0.0017	-0.0007	0.0001	0.0012	0.0006	0.0004	-0.0003	0.0028	0.0027	-0.0032	-0.0027	0.0053	0.0049	0.0043	0.0021	0.0012	0.0013	0.0010	0.0010	0.0013	0.0020	0.0026	0.0034	0.0030	7700:0
C ₁ -0.0001 -0.0001		$C_{Y,a}$	0.0019	-0.0043 -0.0043	-0.0074	0.0124	0.000	0,0062	0.0083	0.0066	0.0054	0.0047	0.0009	0.0017	0.0034	0.0121	0.0110	0.00%	0.0106	-0.0086	-0.0075	0.0036	0.0018	0.0116	0.0038	0.0040	0.0038	0.0032	0.0048	0.000	0.00/4	0.0097	0,000
<i>C_n</i> 0.0003 0.0004 0.0010		$C_{m,a}$	0.1077	0.1024	0.1162	-0.0614	-0.0009	-0.0524	-0.2489	-0.2430	-0.2333	-0.2302	0.1082	0.0554	0.0014	-0.0623	-0.1633	-0.2492	-0.3751	0.1176	0.0624	0.0093	1.0491	0.14/0	0.2320	0.5104	0.3023	0.1125	0.1065	0.10/8	0.1095	0.0803	t//0.0
C _{F.S} -0.0004 -0.0008 -0.0018		$C_{D,a}$	0.0175	0.0281	0.0342	0.0474	0.0551	0.0581	0.1142	0.1189	0.1177	0.1166	0.0147	0.0209	0.0308	0.0450	0.0/46	0.1161	0.1819	0.0323	0.0377	0.0467	0.05/3	0.0817	0.1166	0.1399	0.1852	0.0182	0.0219	0.0246	0.0257	0.0328	74000
C _m 0.0007 0.0012 0.0030	eristics	$C_{L,a}$	-0.0771	-0.0/11	-0.0819	0.0236	0.0210	0.0128	0.1284	0.1198	0.1082	0.1056	-0.0785	-0.0405	-0.0079	0.0247	0.0822	0.1290	0.1865	-0.0846	-0.0466	-0.0165	0.0096	0.0634	0.10/0	0.1448	0.1623	0.0806	-0.0755	-0.0766	-0.0777	0.0409	0.0394
$C_{F,N}$ -0.0002 -0.0001	nance charact	c_l	-0.0007	-0.0016 -0.0020	-0.0023	0.0002	0.0003	9000	0.0005	0.0003	0.0002	0.0005	-0.0013	-0.0010	9000:0-	-0.0001	40000	0.0005	0.0017	-0.0022	-0.0019	-0.0017	0.0008	0.0004	0.0006	0.0012	0.0015	-0.0009	-0.0010	-0.0012	0.0011	0.0006	0.0003
$C_{F,j}$ $C_{F,j}$ $C_{0.0172}$ $C_{0.0317}$	ılsive perforn	<i>C</i> "	0.0001	0.0058	0.0243	-0.0028	0.0024	0.0004	-0.0017	0.0032	0.0081	0.0206	9000.0	0.0004	-0.0003	-0.0028	-0.0027	0.0020	-0.0027	0.0244	0.0241	0.0234	0.0218	0.0185	0.0206	0.0204	0.0206	0.0013	0.0035	0.0054	9600.0	-0.0030	-0.001
δ _y , deg -1.40 -1.40 -2.26	(b) Aeropropulsive performance characteristics	C_{Y}	0.0019	9690	-0.0405	0.0124	0.0028	0.0026	0.0083	0.0000	-0.0081	-0.0283	0.000	0.0017	0.0034	0.0121	0.0110	0.0096	0.0134	-0.0411	-0.0402	-0.0383	-0.0318	-0.0219	-0.0290	-0.0286	-0.0295	-0.0032	-0.0072	-0.0108	-0.0180	0.0097	0.0064
δ _p , deg -0.75 -0.42 -1.39		C _m	0.1077	0.1140	0.1713	-0.0614	0.0493	-0.0338	-0.0031	-0.2317	-0.2119	-0.1753	0.1082	0.0554	0.0014	-0.0623	-0.1635	-0.2492	-0.3314	0.1716	0.1167	0.0636	0.0067	-0.0922	-0.1774	-0.2635	-0.3072	0.1125	0.1106	0.1153	0.1270	-0.0803	-0.0735
F _f F _i 0.9633 0.9658 0.9545		$C_{(D-F)}$	0.0175	-0.2467	-0.7611	0.0474	-0.2109	0.4404	0.0/30	-0.1259	-0.3581	-0.6108	0.0147	0.0209	0.0308	0.0450	0.0746	0.1161	0.1010	-0.7465	-0.7493	-0.7333	-0.7234	-0.6783	-0.6036	-0.5357	-0.4992	0.0182	-0.0752	-0.1616	-0.2414	0.0328	-0.0571
F _J F _i 0.9637 0.9661 0.9556		c_L	-0.0771	-0.0747	-0.1035	0.0236	0.0886	0.1422	0.16//	0.1284	0.3249	0.4217	-0.0785	-0.0405	-0.0079	0.0247	0.0822	0.1290	0.1048	-0.1052	0.0014	0.1000	0.1966	0.3169	0.4193	0.5221	0.5724	-0.0806	-0.0767	-0.0781	-0.0842	0.0409	0.0617
NPR 2.01 2.99 4.01		NPR	1.00	2.01	3.00 4.25	1.00	1.99	9.8	00.4	1 98	3.05	4.24	1.00	0.1	9.1	1.00	0.00	0.99	66.0	4.25	4.22	4.22	4.26	4.26	4.26	4.26	4.25	0.99	1.99	3.04	4.03	0.98	1.96
		α, deg	0.03	0.00	6.6	15.00	15.01	14.99	15.01	25.03	24.99	25.03	0.05	5.01	10.01	15.00	20.03	24.99	30.02	0.00	5.01	10.02	15.02	19.99	24.99	30.02	32.47	0.02	0.0	0.05	0.04	15.04	15.03
		M	0.300	0.299	0.299	0.298	0.297	0.297	0.297	0.298	0.290	0.299	0.301	0.301	0.302	0.301	0.299	0.297	0.297	0.303	0.299	0.299	0.298	0.298	0.302	0.300	0.299	0.499	0.499	0.498	0.500	0.500	0.500

Table 13. Continued

	C',	#", O	0.000	0.0008	0.0010	0.0010	0.0010	0.0010	0.000	0.0003	00003	0.0007	0 0007	0.000	0.0013	-0.0009	-0.0006	-0.0005	0.0000	0.0010	0.0010	0.0017	9000.0	-0.0005	-0.0006	-0.0008	60000	0.000	0.0002	0.0003	0.0003	0.0003	0.000	0.000	-0.0005	-0.0004	0.0002
	"		-0.0026	0.0008	0.0021	0.0029	0.0043	0.0058	0.0017	0.0017	0000	-0.0025	0.0002	0.0013	-0.0020	0.0040	0.0037	0.0029	-0.0017	0.0029	0.0045	0.0017	0.0018	0.0026	0.0029	0.0036	0.0046	0.0055	0.0000	0.000	0.00	0.0014	0.000	0.0022	0.0020	0.0014	0.0001
	$C_{Y,a}$	0.0105	0.0105	-0.0015	-0.0049	6900.0	-0.0104	-0.0141	-0.0049	-0.0047	-0.0023	0.0080	0.0002	-0.0038	0.0078	-0.0094	-0.0088	-0.0060	0.0080	-0.0064	-0.0120	-0.0022	-0.0055	-0.0074	-0.0079	-0.0094	0.0112	0.0130	0.0003	0.0016	0.002	5.0033	-0.0062	-0.0070	-0.0064	-0.0045	9000'0-
	$C_{m,a}$	-0.0732	-0.0709	-0.2611	-0.2603	-0.2565	-0.2537	-0.2518	0.1101	0.0572	0.0039	-0.0812	-0.1740	-0.2617	-0.3428	0.1102	0.0561	0.0053	-0.0703	-0.1634	-0.2533	-0.3418	0.1183	0.1140	0.1145	0.1157	0.11/8	0.1197	0660	-0.0879	0.0862	-0.0840	-0.0823	0.1171	0.0669	0.0130	-0.0919
	$C_{D,a}$	0.0357	0.0357	0.0961	0.0952	0.0951	0.0941	0.0939	0.0172	0.0177	0.0218	0.0314	0.0568	0.0955	0.1389	0.0250	0.0246	0.0281	0.0343	0.0574	0.0948	0.1386	0.0201	0.0211	0.0225	0.0229	0.0234	0.0200	0.0300	0.0298	0.0301	0.0301	0.0298	0.0198	0.0182	0.0199	0.0301
	$C_{L,a}$	0.0341	0.0319	0.1496	0.1472	0.1421	0.1394	0.1379	-0.0791	-0.0405	-0.0072	0.0421	0.0994	0.1511	0.1922	-0.0786	-0.0396	-0.0095	0.0311	0.0870	0.1399	0.1861	0.0843	-0.0805	0.0810	0.0818	0.0831	0.0518	0.0318	0.0468	0.0453	0.0437	0.0425	-0.0830	-0.0467	-0.0133	0.0508
nemmed	C_{l}	0.0004	9000.0	0.0008	0.0007	0.0007	0.0008	0.0007	-0.0005	-0.0003	-0.0003	0.0007	0.0007	0.0008	0.0013	-0.0011	-0.0009	-0.0008	0.0006	0.0007	0.0008	0.0014	9000	0.000	-0.0008	0.000	0.0010	0.0000	0.0001	0.0002	0.0001	0.0001	0.0001	-0.0007	-0.0005	-0.0004	0.0002
14016 13. CC	C_n	-0.0002	0.0036	0.0008	0.0035	0.0055	0.0112	0.0145	0.0017	0.0017	0.0009	-0.0025	0.0002	0.0013	-0.0020	0.0111	0.0106	0.0097	0.0051	0.0098	0.0115	0.0086	0.0018	0.0033	0.0042	0.007	0.0115	00000	0.0014	0.0023	0.0049	0.0070	0.0089	0.0022	0.0020	0.0014	0.0001
	C_{Y}	0900:0	-0.0001	-0.0015	-0.0072	-0.0113	-0.0222	-0.0290	-0.0049	-0.0047	-0.0023	0.0080	0.0002	-0.0038	0.0078	-0.0213	-0.0205	//10.0-	0.0038	0.0181	-0.0238	0.0140	0.003	0.000	0.0102	0.0133	-0.0233	-0.0005	-0.0030	-0.0048	-0.0093	-0.0130	-0.0164	-0.0070	0.0064	0.0045	-0.0006
	C,	-0.0662	-0.0534	-0.2611	0.2562	-0.2495	-0.2342	-0.2268	0.1101	0.0572	0.0039	-0.0812	-0.1740	-0.2617	0.3428	0.1300	0.0/36	0.0247	-0.0508	0.1441	-0.2337	0.3222	0.1161	0.1161	0.1758	0.1236	0.1370	-0.0930	-0.0876	-0.0843	-0.0762	-0.0700	-0.0650	0.1171	0.0669	0.0130	-0.0919
	$C_{(D-F)}$	-0.1402	-0.2233	0.0961	0.00/5	-0.068/	-0.1655	-0.2070	0.0172	0.0177	0.0218	0.0314	0.0568	0.0955	0.1389	0.2601	40.2304	0.2300	0.2403	-0.2082	0.1033	0.0201	0.0201	0.0590	1227	-0.1539	-0.1805	0.0300	-0.0209	-0.0604	-0.1111	-0.1421	-0.1688	0.0198	0.0182	0.0199	1000.0
	C_L	0.0799	0.0945	0.1496	0.186/	0.2171	0.2519	0.2668	-0.0791	0.0405	-0.0072	0.0421	0.0994	0.1511	0.1922	0.0903	0.0228	0.0320	0.0971	0.1738	0.2228	-0.0843	-0.0811	0.0011	-0.0858	0.0890	-0.0919	0.0518	0.0619	0.0703	0.0792	0.0839	0.0881	-0.0830	0.0467	0.0133	0.000
	NPR	3.00	4.03	100	20.0	6.70	5.5	7.7	36.0	3 6.0	6.9 6.9	3 6.0	96.0	76.0	2,30	27.	25.4	5 7	17. Y	1. 4 2. 5.	4 23	0.97	2.00	2.98	4.26	5.01	5.64	96.0	2.03	3.00	4.23	6.7	5.62	0.97	0.97	0.97	0.70
	α, deg	15.01	15.00	25.03	3.5	2.5	76.47	66.43	8.5	20.0	10.02	20.62	20.02	20.03	5.0	8 8	30.01	15.03	20.00	24 90	20 07	0.02	9	-0.05	-0.02	-0.01	0.02	15.02	15.03	15.03	15.05	15.01	15.03	0.0	4. 5. 5. 5.	10.04 14 99	ì
	M	0.500	0.500	0.50	0.500	90.0	0.50	9.50	0.499	0.501	0.505	0.501	1000	0.490	0.500	0.503	0.503	0.501	0.504	0.50	0.499	0.700	9690	0.700	0.700	0.699	0.699	0.700	0.699	0.690	0.699	0.699	0.698	70/0	70.0	0.707	1

	$C_{l,a}$	0.0007	-0.0008	-0.0006	-0.0005	0.0003	0.0009
	$C_{n,a}$	0.0001	0.0035	0.0034	0.0028	0.0017	0.0025
	$C_{Y,a}$	0.0000	-0.0093	-0.0090	-0.0074	-0.0041	-0.0064
	$C_{m,a}$	-0.1777	0.1153	0.0634	0.0158	-0.0849	-0.1725
	$C_{D,a}$	0.0538	0.0225	0.0203	0.0217	0.0297	0.0525
	$C_{L,a}$	0.1037	-0.0816	-0.0446	-0.0162	0.0436	0.0972
oncluded	C_I	0.0007	-0.0010	-0.0008	9000:0-	0.0003	0.0007
Table 13. Concluded	<i>C</i> "	0.0001	0.0071	6900'0	0.0063	0.0052	0900:0
	C_{Y}	0.0000	-0.0153	-0.0150	-0.0134	-0.0102	-0.0124
	$C_{\mathfrak{m}}$	-0.1777	0.1253	0.0733	0.0257	-0.0749	-0.1625
	$C_{(D-F)}$	0.0538	-0.1222	-0.1232	-0.1207	-0.1114	-0.0851
	C_L	0.1037	-0.0854	-0.0358	0.0050	0.0774	0.1430
	NPR	0.95	4.23	4.25	4.24	4.22	4.22
	α, deg	20.02	0.040	5.030	10.01	15.02	19.97
	M	0.698	0.699	0.703	0.702	0.697	0.698

Table 14. Static and Aeropropulsive Performance Characteristics at Afterburning Power

				$C_{l,a}$	0.0026	0.0024	0.0023	0.0023	0.0040	0.0033	0.0030	0.0026	0.0024	0.0020	0.0021	0.0014	0.0040	0.0038	0.0038	0.0027	0.0030	0.0026	0.0034	0.0029	0.0027	0.0034	0.0040	0.0039
				$C_{n,a}$	-0.0026	0.0021	0.0032	0.000	0.0036	0.0045	0.0061	-0.0012	07007	-0.0011	-0.0014	0.0008	-0.0003	-0.0004 40002	0.0020	0.0015	90000	0.0024	0.0010	0.0036	0.0071	0.0055	0.0055	0.0060
		C ₁ 0.0000 0.0000 0.0000		$C_{Y,a}$	0.0073	08000	0.0121	-0.0029	-0.0113	-0.0144	-0.0186	0.0021	0.003	0.0007	0.0021	-0.0048	0.0009	0.0015	0.0039	-0.0026	0.0026	-0.0070	-0.0018	-0.0109	-0.0216	-0.0154	-0.0150	-0.0167
		C _n 0.0004 0.0008 0.0016		$C_{m,a}$	-0.5209	-0.5307	-0.5331	-0.6147	-0.6075	-0.6118	-0.6124	0.3899	-0.4280	-0.5188	-0.5182	-0.5697	-0.5937	-0.6126	-0.0/23 -0.7185	-0.3953	-0.4430	-0.4717	-0.5049	-0.5372	-0.5725	-0.6019	-0.6162	-0.6372
		C _{F,S} -0.0007 -0.0012 -0.0026		$C_{D,a}$	0.2685	0.2643	0.2620	0.3924	0.3854	0.3855	0.3842	0.1474	0.1808	0.2653	0.2645	0.3193	0.3618	0.3952	0.4307	0.1550	0.1875	0.2087	0.2337	0.2651	0.3093	0.3522	0.3849	0.4186
-10°]	teristics	C _m 0.0012 0.0024 0.0046	cteristics	$C_{L,a}$	0.2508	0.2535	0.2515	0.1965	0.1983	0.1973	0.1965	0.2113	0.2253	0.2494	0.2488	0.2473	0.2253	0.1951	0.1569	0.2069	0.2244	0.2322	0.2443	0.2515	0.2454	0.2313	0.2001	0.1667
$\left[\delta_{A,D} = -10^{\circ}; \delta_{B,E} = 15^{\circ}; \delta_{C,F} = -10^{\circ}\right]$	(a) Static $(M = 0)$ performance characteristics	C _{F,N} -0.0006 -0.0011 -0.0023	(b) Aeropropulsive performance characteristics	C_{I}	0.0026	0.0019	0.0020	0.0047	0.0036	0.0030	0.0032	0.0026	0.0024	0.0020	0.0021	0.0014	0.0040	0.0038	0.0038	0.0030	0.0032	0.0029	0.0037	0.0031	0.0030	0.0037	0.0043	0.0042
-10°; δ _{B,E} =	<i>1</i> = 0) perforr	C_{Fj} -0.0171 -0.0317 -0.0460	oulsive perfor	<i>C</i> "	-0.0026	0.0080	0.0151	0.0000	0.0097	0.0164	0.0336	-0.0012	0.0000	-0.0011	-0.0014	0.0008	-0.0003	0.000	0.0020	0.0290	0.0267	0.0298	0.0286	0.0312	0.0349	0.0329	0.0329	0.0335
$\delta_{A,D} = -$	(a) Static (A	δ _y , deg -2.22 -2.21 -3.20	(b) Aeroprol	C_Y	0.0073	0.0181	-0.0512	-0.0029	-0.0216	-0.0335	-0.0650	0.0021	-0.0008	0.0007	0.0021	-0.0048	0.0000	0.0015	0.0102	-0.0490	-0.0435	-0.0532	-0.0482	-0.0574	-0.0685	-0.0617	-0.0613	-0.0631
		δ _p , deg -1.91 -1.91 -2.83		C.	-0.5209	-0.5120	-0.4960	-0.6147	-0.5882	-0.5746	-0.5295	0.3899	-0.4572	-0.5188	-0.5182	-0.5697	-0.5937	-0.6126	-0.7185	-0.3124	-0.3606	-0.3890	-0.4220	-0.4540	-0.4887	-0.5192	-0.5334	-0.5542
		F _f F _i 0.9575 0.9568 0.9468		$C_{(D-F)}$	0.2685	0.0740	-0.100 -0.324	0.3924	0.2440	0.1225	0.0464	0.1474	0.2065	0.2653	0.2645	0.3193	0.3618	0.3952	0.4915	-0.5134	-0.4560	-0.4211	-0.3812	-0.3242	-0.2366	-0.1334	-0.0457	0.0468
		F,/F _i 0.9587 0.9495		C_L	0.2508	0.4314	0.2903	0.1965	0.4252	0.6189	0.8595	0.2113	0.2348	0.2494	0.2488	0.2473	0.2253	0.1951	0.1569	0.6275	0.6747	0.7064	0.7418	0.7818	0.8307	0.8527	0.8627	0.8658
		NPR 2.01 3.02 4.01		NPR	86.0	2.00	4.27	0.97	1.99	2.98	4.27	86.0 0	0.98	0.98	0.98	0.98	0.97	0.97	0.96	4.28	4.27	4.27	4.27	4.27	4.26	4.27	4.26	4.26
				α, deg	45.04	84.98	4.97	60.01	59.98	59.95	59.99	32.23	40.00	45.01	45.01	50.02	55.01	60.01	68.23	35.17	37.97	39.96	41.96	44.97	49.98	54.98	59.96	86.78
				M	0.297	0.305	0.300	0.297	0.300	0.300	0.300	0.301	0.301	0.301	0.301	0.300	0.301	0.299	0.299	0.301	0.301	0.300	0.300	0.300	0.298	0.300	0.300	0.300

Table 15. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 20^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

	C _{La} 0.0010 0.0003 0.0003 0.0003 0.0017 0.0011 0.00011 0.00011 0.00034 0.0013 0.0013 0.0014 0.0017 0.0014 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017
	$C_{n,a}$ 0.0001 0.00018 0.00024 0.00024 0.00020 0.00021 0.00027 0.00027 0.00029 0.00029 0.00020 0.00020 0.0003 0.0003
C_l 0.0000 0.0001 0.0002	$C_{Y,a}$ -0.0019 -0.0085 -0.0085 -0.0084 -0.0084 -0.0081 -0.0083 -0.0081
<i>C</i> _n 0.0010 0.0017 0.0028	C _{m,a} -0.5162 -0.5298 -0.5339 -0.5348 -0.6098 -0.6098 -0.6099 -0.6099 -0.6099 -0.6010 -0.6010 -0.6010 -0.6010 -0.6010 -0.6010
C _{F,S} -0.0018 -0.0031 -0.0051	$C_{D,a}$ 0.2642 0.2648 0.2654 0.2654 0.3657 0.3857 0.3857 0.1480 0.1782 0.2030 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2036 0.2037 0.3045 0.3045 0.3045 0.3045 0.3045 0.3045 0.3045 0.3045 0.3046 0.3036
C _m 0.0021 0.0039 0.0061	$C_{L,a}$ 0.2493 0.2542 0.2542 0.2531 0.2508 0.1960 0.2007 0.2033 0.2143 0.2261 0.2377 0.2486 0.2350 0.2350 0.2350 0.2350 0.2350
δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} -6.32 -0.0159 -0.0009 0.003 -5.73 -0.0305 -0.0015 0.003 -6.45 -0.0450 -0.0025 0.000	C_l 0.0010 0.0005 0.00010 0.00028 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0017 0.0028 0.0028 0.0028 0.0028 0.0028 0.0035 0.0028
$C_{F,j}$ -0.0159 -0.0305 -0.0450 pulsive perfor	C_n 0.0001 0.0138 0.0246 0.0248 0.0262 0.0468 0.0020 0.0020 0.0020 0.0020 0.0020 0.00440 0.00457 0.00458 0.00475
δ _y , deg -6.32 -5.73 -6.45 (b) Aeropro	C _Y -0.0019 -0.0292 -0.0465 -0.0881 -0.0883 -0.0020 -0.0021 -0.0021 -0.0021 -0.0021 -0.0021 -0.0021 -0.0021 -0.0031 -0.0885 -0.00337
δ _p , deg -3.07 -2.86 -3.12	C _m -0.5162 -0.4949 -0.4949 -0.4132 -0.5743 -0.5743 -0.5743 -0.4963 -0.4534 -0.4876 -0.5724 -0.5729 -0.6140 -0.6727 -0.693 -0.693 -0.693 -0.693 -0.693 -0.693 -0.693 -0.693 -0.693 -0.693
F/F _i 0.9047 0.9225 0.9230	C _(D - F) 0.2642 0.0753 -0.0980 -0.3167 0.3910 0.1136 0.1782 0.2030 0.2306 0.2368 0.3945 0.4501 0.4925 0.4501 0.4522 0.2340 0.0312 0.0312
F_i/F_i 0.9116 0.9283 0.9302	C_L 0.2493 0.4186 0.5660 0.7447 0.1960 0.4121 0.5981 0.25143 0.2261 0.2514 0.2508 0.2514 0.2508 0.1783 0.1783 0.1591 0.5924 0.6430 0.7509 0.7509 0.7509 0.7509 0.7509 0.7509 0.7509 0.7509
NPR 2.00 2.99 4.00	NPR 0.98 1.96 1.96 2.98 2.99 6.99 6.99 6.99 6.99 6.99 6.99 6.99
	α, deg 44.99 44.99 59.98 59.98 59.98 59.98 59.99 60.01 65.00 65.0
	0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.300

Table 16. Static and Aeropropulsive Performance Characteristics at Afterburning Power

					$C_{l,a}$	-0.0004	0.0003	0.0003	0.0011	0.0007	0.0004	0.0003	0.0000	-0.0001	-0.0009	0.0027	0.0022	0.0017	0.0019	0.0042	0.0033	0.0024	0.0026	0.000	2000	0.0010	0.0017	0.0003	-0.0001	0.0010	0.0025	0.0029	0.0017	0.0031
					$C_{n,a}$	0.0019	0.0031	0.0030	-0.0017	-0.0017	0.0017	0.0064	0.0010	-0.0034	-0.0004	0.0000	0.0008	0.0014	0.0022	0.0003	0.0032	0.0036	0.0046	0.0008	0.0010	-0.0018	-0.0004	0.0010	-0.0003	0.0002	0.0011	-0.0028	90.00	-0.0029
		C_l	0.0001 0.0002 0.0002		$C_{Y,a}$	-0.0061	-0.0065	0.0120	0.0063	0.0092	-0.0009	-0.0134	0.000	0.0149	0.0086	0.0005	-0.0029	-0.0053	/9000 P 0000	0.0016	-0.0082	-0.0101	-0.0116	0.0016	00000	0.0076	0.0027	-0.0016	0.0027	-0.0003	0.0050	0.0094	0.0019	0.0000
		Č,	0.0015 0.0026 0.0038		$C_{m,a}$	0.1074	0.1251	0.1510	-0.0621	-0.0456	-0.0391	-0.0246	0.2310	-0.1993	-0.2128	-0.5184	-0.5282	-0.5307	0.5331	-0.6058	-0.6048	6909.0-	-0.6071	0.1110	0.0019	-0.0610	-0.1443	-0.2292	-0.3150	-0.3586	-0.3855	0.4250	0.4525	-0.4862 -0.5158
		$C_{F,S}$	-0.0030 -0.0050 -0.0074		$C_{D,a}$	0.0178	0.0290	0.0344	0.0198	0.0299	0.0351	0.0224	0.0689	0.0745	0.0756	0.2634	0.2657	0.2659	0.26/1	0.3875	0.3822	0.3818	0.3838	0.0142	0.0149	0.0197	0.0353	0.0682	0.1067	0.1299	0.1463	0.1787	0.2032	0.2622
[.01	eristics	<i>C</i> ,	0.0030 0.0056 0.0081	teristics	$C_{L,a}$	-0.0725	-0.0847	-0.0933 -0.1046	0.0331	0.0198	0.0153	0.0068	0.1343	0.1025	0.1208	0.2545	0.2560	0.2548	0.2540	0.1951	0.1998	0.2011	0.1990	0.0743	00000	0.0344	0.0776	0.1328	0.1779	0.2001	0.2114	0.2259	0.2346	0.2497
$\delta_{A,D} = -10^{\circ}; \delta_{B,E} = 25^{\circ}; \delta_{C,F} = -10^{\circ}$	(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	-0.0013 -0.0025 -0.0035	(b) Aeropropulsive performance characteristics	C_l	-0.0004	0.0014	0.0024	0.0011	0.0017	0.0025	0.0033	0.000	0.0021	0.0021	0.0027	0.0021	0.0017	0.0020	0.0042	0.0032	0.0024	0.0026	0.000	0000	0.0010	0.0017	0.0003	-0.0001	-0.0010	0.0025	0.0029	0.001/	0.0019
10° ; $\delta_{\mathrm{B,E}} = 2$	(=0) perform	$C_{F,j}$	-0.0158 -0.0295 -0.0435	ulsive perfon	ζ,	0.0019	0.0266	0.0401	-0.0017	0.0218	0.0432	0.0714	0.0010	0.0382	0.0648	0.0000	0.0186	0.0354	0.0530	0.0003	0.0213	0.0382	0.0603	0.000	0.000	-0.0018	-0.0004	0.0010	-0.0003	0.0002	-0.0011	-0.0028	0.0006	6700.0- -0.0001
$\left[\delta_{A,D}=-\right]$	(a) Static (A	δ_y , deg	-10.65 -9.60 -9.60	(b) Aeroprop	$C_{\mathbf{y}}$	-0.0061	0.0530	50.09	0.0063	-0.0373	-0.0801	-0.1369	-0.0342	-0.0643	-0.1158	0.0005	-0.0343	-0.0659	96.02	0.0016	-0.0402	-0.0719	-0.1129	0.0010	-0.000	0.0076	0.0027	-0.0016	0.0027	-0.0003	0.0050	0.0094	0.0019	0.0005
		δ_p , deg	4.87 4.90 4.65		<i>C</i>	0.1074	0.1720	0.2220	-0.0621	0.0014	0.0492	0.1105	-0.1539	-0.1110	-0.0768	-0.5184	-0.4795	-0.4373	-0.3952 -0.3784	-0.6058	-0.5551	-0.5116	-0.4560	0.1110	0.0019	-0.0610	-0.1443	-0.2292	-0.3150	-0.3586	-0.3855	0.4250	0.4363	-0.4602 -0.5158
		$F eg F_i$	0.8795 0.8873 0.8949		$C_{(D-F)}$	0.0178	0.2180	-0.4231	0.0198	-0.2144	-0.4276	0.6985	-0.1663	-0.3666	-0.6161	0.2634	0.0731	-0.0920	2079	0.3875	0.2339	0.1054	-0.0537	0.0142	0.0149	0.0197	0.0353	0.0682	0.1067	0.1299	0.1463	0.1/8/	0.2032	0.2622
		$F_{r}\!/\!F_{i}$	0.8980 0.9031 0.9106		C_L	-0.0725	0.1054	-0.1622	0.0331	0.0635	0.0980	0.1391	0.1903	0.2636	0.3778	0.2545	0.4130	0.5439	0.6785	0.1951	0.4052	0.5804	0.7972	-0.075	0.0000	0.0344	0.0776	0.1328	0.1779	0.2001	0.2114	0.2259	0.2340	0.2497
		NPR	2.01 3.01 4.06		NPR	1.00	2.01	4.25	0.99	2.01	3.00	4.25	2.00	2.99	4.25	0.98	2.00	3.00	4.01	0.97	1.99	3.00	4.24	3 2	0.9 0.9	0.99	0.99	0.99	0.90	66.0	86.0	0.98	0.70	0.98
					a, deg	0.01	0.07	0.00	14.99	15.01	15.02	15.02	24.97	24.96	25.01	45.02	45.01	45.02	45.02	59.99	00:09	00:09	60.02	20.5	10.02	14.98	19.97	24.97	29.94	32.49	35.32	38.00 10.00	40.01	45.02
					W	0.301	0.301	0.302	0.300	0.301	0.300	0.300	0.299	0.299	0.299	0.302	0.302	0.303	0.302	0.299	0.299	0.299	0.300	0.200	0.299	0.298	0.299	0.301	0.298	0.297	0.298	0.298	0.502	0.300

$C_{l,a}$	0.0019	0.0042	0.0044	0.0044	0.0051	-0.001/	-0.0015	-0.0012	-0.0007	-0.0008	-0.0003	-0.0010	0.0024	0.0028	0.0019	0.0027	0.0020	0.0018	0.0038	0.0040	0.0044	0.0014	0.0016	0.0014	0.0011	0.0010	0.0027	0.0018	0.0014	0.0013	0.0013	9000:0	9000.0	0.0004	0.0003	0.0002	0.0010	0.0008	0.0008	0.0026	0.0012	0.0005	0.0003	-0.0003
$C_{n,a}$	0000	0.0000	0.0008	-0.0010	0.0021	0.0080	0.0070	0.0051	0.0014	-0.0009	-0.0025	-0.0020	0.0007	-0.0020	0.0004	-0.0010	0.0016	0.0043	0.0034	0.0048	0.0072	0.0012	0.0031	0.0038	0.0054	0.0069	-0.0011	-0.0024	-0.0032	-0.0017	-0.0001	0.0024	0.0017	0.0020	0.0029	0.0041	0.0014	0.0017	0.0013	-0.0012	0.0012	0.0024	0.0003	0.0054
$C_{Y,a}$	-0.0023	0.0022	0.0003	0.0056	0.0094	5.0181 5.0181	-0.0150	-0.0086	0.0028	0.0103	0.0151	0.0119	0.0021	0.0088	90000	0.0062	-0.0034	-0.0117	-0.0071	-0.0113	-0.0176	-0.0038	-0.0064	-0.0077	-0.0114	-0.0139	0.0038	0.0093	0.0119	0.0082	0.0042	-0.0070	-0.0044	-0.0052	-0.0068	-0.0094	-0.0045	-0.0050	-0.0038	0.0043	-0.0030	-0.0071	0.0001	-0.0132
$C_{m,a}$	-0.5662	-0.5872	-0.6064	0.6680	0.7165	0.1288	0.0187	-0.0450	-0.1470	-0.2113	-0.2789	-0.3297	-0.3840	-0.4307	-0.4611	-0.4925	-0.5294	-0.5652	-0.6059	-0.6319	-0.6346	0.1247	0.1368	0.1418	0.1514	0.1599	-0.0565	-0.0431	-0.0468	-0.0419	-0.0395	-0.2464	-0.2424	-0.2416	-0.2370	-0.2329	0.1165	0.0635	0.0100	-0.0654	-0.1595	-0.2449	-0.3301	0.1206
$C_{D,a}$	0.3153	0.3556	0.3893	0.4465	0.4887	0.0250	0.0254	0.0281	0.0462	0.0720	0.0968	0.1222	0.1518	0.1846	0.2087	0.2339	0.2675	0.3129	0.3855	0.4201	0.4332	0.0199	0.0418	0.0453	0.0432	0.0414	0.0150	0.0202	0.0244	0.0222	0.0210	0.0731	0.0725	0.0750	0.0716	0.0699	0.0178	0.0141	0.0147	0.0177	0.0383	0.0729	0.1134	0.0282
$C_{L,a}$	0.2479	0.2255	0.1953	0.1754	0.15/3	-0.074	-0.0066	0.0272	0.0892	0.1208	0.1482	0.1736	0.2017	0.2196	0.2291	0.2403	0.2503	0.2464	0.2003	0.1703	0.1402	-0.0903	-0.1017	-0.1054	-0.1131	-0.1197	0.0192	0.0064	0.0113	0.0091	0.0088	0.1456	0.1425	0.1410	0.1390	0.1368	-0.0816	-0.0435	-0.0102	0.0289	0.0899	0.1442	0.1905	-0.0820
C_I	0.0019	0.0042	0.0044	0.0044	0.0031	0.0013	0.0015	0.0018	0.0024	0.0022	0.0026	0.0021	0.0024	0.0029	0.0019	0.0027	0.0020	0.0019	0.0038	0.0040	0.0044	0.0014	0.0019	0.0022	0.0023	0.0023	0.0027	0.0023	0.0022	0.0024	0.0025	9000:0	0.0010	0.0012	0.0014	0.0015	0.0010	0.0008	0.0008	0.0026	0.0012	0.0005	0.0003	0.0008
<i>C</i> "	0.0009	0.0000	0.0008	-0.0010	0.0746	0.0736	0.0717	0.0702	0.0673	0.0639	0.0625	0.0637	0.0559	0.0533	0.0559	0.0545	0.0575	0.0599	0.0592	0.0598	0.0633	0.0012	0.0116	0.0187	0.0288	0.0352	-0.0011	0.0061	0.0118	0.0218	0.0286	0.0024	0.0100	0.0168	0.0263	0.0326	0.0014	0.0017	0.0013	-0.0012	0.0012	0.0024	0.0003	0.0287
C_Y	-0.0023	0.0022	0.0003	0.0056	0.0094	-0.1423	-0.1384	-0.1328	-0.1229	-0.1130	-0.1087	-0.1132	-0.0983	-0.0919	-0.1002	0.0947	0.1050	-0.1126	-0.1085	-0.1112	-0.1196	-0.0038	-0.0232	-0.0363	-0.0561	-0.0679	0.0038	-0.0076	-0.0168	-0.0367	-0.0503	-0.0070	-0.0209	-0.0335	-0.0515	-0.0637	-0.0045	-0.0050	-0.0038	0.0043	-0.0030	-0.0071	0.0001	-0.0575
C_{m}	-0.5662	-0.5872	-0.6064	08990	0.7641	0.2046	0.1536	0.0907	-0.0097	-0.0765	-0.1435	-0.1930	-0.2340	-0.2804	-0.3106	-0.3418	-0.57/6	-0.4145	-0.4546	-0.4828	-0.4823	0.1247	0.1537	0.1737	0.2003	0.2185	-0.0565	-0.0260	-0.0147	0.0071	0.0197	-0.2464	-0.2257	-0.2100	-0.1882	-0.1740	0.1165	0.0635	0.0100	-0.0654	-0.1595	-0.2449	-0.3301	0.1690
$C_{(D-F)}$	0.3153	0.3556	0.3893	0.4465	0.4687	-0.7137	-0.7032	-0.6963	-0.6727	-0.6140	-0.5672	-0.5326	-0.4906	0.418	0.4048	-0.3653	-0.3126	-0.2208	-0.0529	0.0411	0.0873	0.0199	-0.0474	-0.1234	-0.2212	-0.2776	0.0150	-0.0687	-0.1433	-0.2398	-0.2969	0.0731	-0.0102	-0.0828	-0.1770	-0.2318	0.0178	0.0141	0.0147	0.0177	0.0383	0.0729	0.1134	-0.2336
C_L	0.2479	0.2255	0.1953	0.1754	0.1373	-0.0321	0.0625	0.1600	0.2870	0.3757	0.4625	0.5227	0.5598	0.6082	0.6396	0.6/20	0./165	0.7580	0.7990	0.7959	0.8019	-0.0903	-0.1092	-0.1196	-0.1340	-0.1444	0.0192	0.0223	0.0412	0.0571	0.0675	0.1456	0.1726	0.1983	0.2308	0.2486	-0.0816	-0.0435	-0.0102	0.0289	0.0899	0.1442	0.1905	-0.1026
NPR	0.97	0.97	0.97	0.97	0.90	4.27	4.25	4.25	4.26	4.27	4.24	4.24	4.22	4.22	4.22	4.23	67.7	4.23	4.23	4.24	4.23	0.99	2.00	2.99	4.26	4.97	0.98	2.01	3.01	4.26	5.01	0.97	96. E	5.99	4.27	2.02	0.99	0.99	0.99	0.98	0.98	0.97	0.96	4.24
α, deg	50.02	54.98	59.99	64.99	00.47	5.03	10.01	15.01	20.01	25.00	29.96	32.69	35.33	38.00	39.98	42.00	4.78 8.98	49.99	59.98	64.98	68.59	0.02	0.10	0.08	0.12	0.11	14.99	15.04	15.01	15.00	15.00	24.86	24.87	24.85	24.89	24.88	0.02	5.05	10.00	14.98	19.94	24.84	29.81	0.12
M	0.298	0.302	0.298	0.298	0.300	0300	0.301	0.300	0.298	0.301	0.300	0.298	0.300	0.299	0.299	667.0	0.298	0.299	0.299	0.301	0.298	0.498	0.499	0.499	0.500	0.499	0.499	0.499	0.499	0.499	0.499	0.499	0.500	0.501	0.500	0.501	0.500	0.502	0.501	0.500	0.500	0.499	0.498	0.501

	$C_{l,a}$	-0.0003	-0.0001	0.0008	0.0005	0.0003	0.0003
	$C_{n,a}$	0.0050	0.0044	-0.0017	0.0010	0.0026	0.0010
	$C_{Y,a}$	-0.0118	-0.0100	0.0084	0.0004	-0.0053	0.0000
	$C_{m,a}$	0.0651	0.0162	-0.0615	-0.1445	-0.2338	-0.3253
	$C_{D,a}$	0.0244	0.0244	0.0266	0.0431	0.0777	0.1173
	$C_{L,a}$	-0.0422	-0.0121	0.0308	0.0775	0.1340	0.1846
ncluded	<i>C</i> ¹	0.0008	0.0010	0.0019	0.0016	0.0014	0.0014
Table 16. Conclude	<i>C</i> ,	0.0283	0.0277	0.0218	0.0244	0.0260	0.0246
	C_Y	-0.0562	-0.0545	-0.0362	-0.0442	-0.0498	-0.0448
	C,	0.1136	0.0649	-0.0127	-0.0957	-0.1852	-0.2763
	$C_{(D-F)}$	-0.2388	-0.2383	-0.2340	-0.2120	-0.1697	-0.1233
	C_L	-0.0402	0.0129	0.0784	0.1475	0.2254	0.2978
	NPR	4.24	4.25	4.24	4.26	4.26	4.24
	α, deg	5.06	10.05	14.99	19.95	24.89	29.82
	W	0.500	0.501	0.499	0.500	0.501	0.498

Table 17. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 15^{\circ}; \, \delta_{B,E} = 15^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

	C ₁ a 0.0031 0.0025 0.0023 0.0014 0.0037 0.0032 0.0032 0.0017 0.0044 0.0045 0.0017 0.0028 0.0017 0.0045 0.0017 0.0028 0.0017 0.0028 0.0017 0.0028 0.0017 0.0028 0.0017 0.0028
	C _{n,a} 0.0005 0.
C _l 0.0000 0.0001 0.0001	C _{Ka} 0.0016 0.0123 0.0193 0.0194 0.0026 0.0026 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027 0.0027
<i>C</i> _n 0.0004 0.0009 0.0017	C _{m,a} 0.5216 0.5229 0.5239 0.6137 0.6338 0.6716 0.7001 0.3943 0.4308 0.6718 0.6718 0.6718 0.6718 0.6718 0.6718 0.6718 0.6718 0.7030 0.7055
C _{F.S} -0.0006 -0.0013 -0.0029	$C_{D,a}$ 0.2671 0.2839 0.2937 0.3083 0.3932 0.4040 0.4221 0.4385 0.1481 0.1804 0.2040 0.2333 0.24483 0.3926 0.4483 0.3926 0.4483 0.3926 0.4483 0.4904 0.1831 0.2245 0.2477 0.2770 0.3534 0.49372 0.44372
C _m -0.0019 -0.0036 -0.0060	C _{1,a} 0.2549 0.2728 0.2947 0.208 0.2134 0.2185 0.2185 0.2374 0.2501 0.2501 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2504 0.2503 0.2
δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} -2.05 -0.0161 0.0011 -0.001 -2.45 -0.0295 0.0018 -0.005 -3.84 -0.0427 0.0030 -0.006	C ₁ 0.0031 0.0035 0.0035 0.0037 0.0037 0.0037 0.0033 0.0044 0.0038 0.0038 0.0038 0.0038 0.0038 0.0044 0.0038 0.0038 0.0044 0.0038 0.0044 0.0038
$C_{F,j}$ -0.0161 -0.0295 -0.0427 pulsive perfo	C _n 0.0005 0.0102 0.0104 0.0208 0.0413 0.0016 0.0034 0.0016 0.0016 0.0016 0.0036 0.0356 0.0413 0.0409
δ _y , deg -2.05 -2.45 -3.84 (b) Aeropro	C_{γ} -0.0016 -0.0214 -0.0392 -0.0775 -0.0907 -0.0807 -0.0026 -0.0026 -0.0027 -0.0026 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027 -0.0027
δ _p , deg 3.85 3.52 3.97	C _m -0.5216 -0.5933 -0.6394 -0.7186 -0.7186 -0.7192 -0.520
F _J F _i 0.9061 0.8958 0.8809	C _(D-F) 0.2671 0.1163 -0.0130 0.3932 0.2912 0.2118 0.1173 0.1781 0.1481 0.2643 0.3886
F,F; 0.9087 0.8983 0.8850	C_L 0.2549 0.4644 0.6271 0.8395 0.2008 0.4430 0.6479 0.6479 0.2299 0.2374 0.2501 0.2504 0.1980 0.176 0.1594 0.176 0.176 0.1788 0.176 0.1898 0.8161 0.8871 0.9038 0.8863
NPR 2.01 3.00 4.00	NPR 0.98 0.99 0.99 0.99 0.99 0.99 0.99 0.99
	α, deg 44.98 44.98 44.98 44.98 60.00 59.98 59.98 59.98 59.99 55.01 42.02 45.01 68.32 37.99 65.01 68.32 37.99 65.01 68.32 64.97 65.01 68.05 68.05
	M 0.301 0.301 0.300 0.300 0.300 0.300 0.300 0.300 0.300 0.20

Table 18. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 20^{\circ}; \, \delta_{B,E} = 20^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

		$C_{l,a}$	-0.0005 -0.0008 -0.0006	0.0000	-0.0011 0.0001	400000	-0.0006 -0.0014	0.0019	0.0015	0.0044	0.0019	0.0003	-0.0006	0.0015	0.0003	0.0002	0.0030	0.0022	0.0030	0.0015
		$C_{n,a}$	0.0009 0.0008 0.0016 -0.0017	-0.0044 -0.0083	0.0078	-0.0037	-0.0016 -0.0007	0.0016 0.0029	0.0030	0.0004	0.0058	0.0003	-0.0002	-0.0029	-0.0037	-0.0033 -0.0016	-0.0034	-0.0018	0.0030	0.0012
	C ₁ 0.0001 0.0002 0.0003	$C_{Y,a}$	0.0025 0.0011 0.0041 0.0054	0.0152 0.0276	0.0241	0.0138	0.0069	-0.0052 -0.0111	-0.0113 -0.0188	0.0015	-0.0190	0.0024	0.0014	0.0100	0.0134	0.0114	0.0109	0.0061	0.0107	-0.0034
	C _n 0.0011 0.0023 0.0037	$C_{m,a}$	0.1025 0.0700 0.0495 0.0477	-0.0748 -0.0965	0.1506	-0.2892	-0.326/ -0.3676	-0.5185 -0.5758	-0.6120 -0.6369	-0.6135 -0.6638	-0.7075	0.1044	0.0007	-0.1548	-0.3291	-0.3690 -0.3920	-0.4286	-0.4576	0.4887	-0.5699
	C _{F,S} -0.0015 -0.0062	$C_{D,a}$	0.0135 0.0244 0.0301 0.0354	0.0159	0.0520	0.0906	0.1061	0.2657 0.2865	0.3039 0.3158	0.3913	0.4368	0.0131	0.0100	0.0312	0.1053	0.1284 0.1473	0.1790	0.2034	0.2299	0.3166
eristics	C _m -0.0031 -0.0061 -0.0095 teristics	$C_{L,a}$	-0.0720 -0.0439 -0.0271 -0.0269	0.0433	0.0941	0.1660	0.1941 0.2257	0.2528 0.2803	0.2961 0.3072	0.1998 0.2295	0.2481	-0.0738	0.0029	0.0833	0.1870	0.2076 0.2158	0.2280	0.2382	0.2480	0.2499
iance characte	CF.N 0.0017 0.0030 0.0046 nance charact	C_I	-0.0005 0.0003 0.0018 0.0029	0.0000	0.0035	0.0007	0.0018	0.0019 0.0024	0.0037	0.0044	0.0041	0.0003	0.0006	0.0015	0.0003	0.0002	0.0030	0.0022	0.0030	0.0015
(a) Static $(M = 0)$ performance characteristics	С _{Fj} -0.0120 -0.0242 -0.0364 ulsive perforr	5	0.0009 0.0185 0.0383 0.0631	0.0044 0.0094	0.0568	0.0138	0.0348	0.0016 0.0180	0.0358	0.0004	0.0391	-0.0003	-0.0002	-0.0029	-0.0037	-0.0033 -0.0016	-0.0034	-0.0018	0.0030	0.0012
(a) Static (M	δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_m -7.25 -0.0120 0.0017 -0.003 -8.35 -0.0242 0.0030 -0.006 -9.63 -0.0364 0.0046 -0.006 (b) Aeropropulsive performance characteristics	C_{γ}	-0.0025 -0.0258 -0.0615 -0.1044	0.0152	-0.0855	-0.0106	-0.0498 -0.1096	-0.0052 -0.0352	-0.0670 -0.1228	0.0015	-0.0754 -0.1335	0.0024	0.0014	0.0100	0.0134	0.0114	0.0109	0.0061	0.0107	-0.0034 -0.0034
	δ _p , deg 8.07 7.06 7.26	<i>C</i>	0.1025 0.0200 -0.0485 -0.1185	-0.0748 -0.1464 -0.216	-0.3164	-0.3387	-0.4235 -0.5356	-0.5185 -0.6271	-0.7101 -0.8065	-0.6135 -0.7150	-0.8068 -0.9255	0.1044	-0.0007	-0.1548	-0.3291	-0.3690 -0.3920	-0.4286	-0.4576	0.4887	-0.5699
	FJF _i 0.6795 0.7297 0.7431	$C_{(D-F)}$	0.0135 -0.1698 -0.3604 -0.5986	0.0159	0.5384	-0.0720	-0.2241 -0.4230	0.2657 0.1402	0.0414	0.3913	0.2675	0.0131	0.0100	0.0312	0.1053	0.1284 0.1473	0.1790	0.2034	0.2299	0.3166
	F _t /F _i 0.6917 0.7430 0.7596	C_L	-0.0720 -0.0163 0.0213 0.0542	0.0433 0.1261 0.2180	0.3355	0.2715	0.5697	0.2528 0.4658	0.6297 0.8342	0.1998 0.4461	0.6429	-0.0738	0.0029	0.0833	0.1870	0.2076 0.2158	0.2280	0.2382	0.2480	0.2499
	NPR 2.00 3.00 3.99	NPR	1.00 2.00 3.01 4.25	2.00 3.00 3.00	4.25	5.00	3.00 4.26	0.98 2.00	3.00	0.98 2.01	3.00	99.5	8.8	66.0	0.99	8 8 8 8	0.99	0.98	0.98 0.98	0.98
		α, deg	0.0 0.00 0.00 0.01	15.03	14.94	24.92	24.91	45.00 44.98	44.98 44.95	59.99 60.00	59.97 59.97	0.06	10.03	19.96	29.92	32.37 35.24	38.01	40.00	42.00	50.00
		W	0.298 0.298 0.298 0.298	0.298	0.299	0.299	0.297	0.297 0.298	0.300	0.299	0.298	0.300	0.302	0.298	0.297	0.301	0.300	0.299	0.299	0.299

$C_{l,a}$	0.0044	0.0047	0.0044	0.0058	-0.0005	-0.0004	-0.0003	0.0013	0.0015	0.0017	0.0022	0.0019	0.0008	0.0014	0.0008	0.0007	0.0007	0.0018	0.0025	0.0029	0.0024	0.0061	0.0004	0.0003	0.0003	-0.0001	-0.0004	0.0019	0,0008	0.0005	0.0000	-0.0003	-0.0004	-0.0008	-0.0007	-0.0009	-0.0010	0.0002	-0.0001	-0.0003	0.0017	0.0003	-0.0005	-0.0002	-0.0001
$C_{n,a}$	-0.0001	0.0000	-0.0016	-0.0037	-0.0054	-0.0051	-0.0049	-0.0098	-0.0062	-0.0037	-0.0065	09000	0.0030	-0.0003	0.0017	0.0021	0.0042	0.0063	0.0076	0.0072	0.0071	0.0159	0.0009	0.0010	0.0014	0.0008	-0.0012	-0.0031	-0.0037	-0.0034	-0.0036	-0.0040	0.0012	-0.0004	0.0003	0.0002	-0.0011	0.0012	0.0013	0.0006	-0.0030	-0.0003	0.0015	-0.0016	0.0017
$C_{Y,a}$	0.0031	0.0035	0.0078	0.0150	0.0182	0.0170	0.0155	0.0314	0.0196	0.0114	0.0212	0.0180	-0.0108	-0.0023	-0.0096	-0.0110	-0.0170	-0.0220	-0.0250	-0.0237	-0.0243	-0.0456	-0.0019	-0.0018	-0.0025	-0.0010	0.0029	0.0104	0.0116	0.0103	0.0098	0.0089	-0.0034	0.0018	-0.0011	-0.0014	0.0003	-0.0033	-0.0035	-0.0015	0.0099	0.0014	-0.0044	0.0058	-0.0046
C _{m,a}	-0.5895	-0.6104	-0.6716	-0.7172	0.0632	0.0229	-0.0312	-0.1056	-0.2108	-0.3049	-0.4001	-0.4382	-0.4813	-0.5409	-0.5699	-0.5974	-0.6325	-0.6686	-0.7104	-0.7511	-0.7629	-0.7416	0.1115	0.0991	0.0853	0.0745	0.0729	-0.0799	-0.1005	-0.1166	-0.1370	-0.1449	-0.2653	-0.3018	-0.3213	-0.3432	-0.3527	0.1102	0.0556	0.0020	-0.0819	-0.1758	-0.2648	-0.3453	0.0778
$C_{D,a}$	0.3546	0.3899	0.4474	0.4879	0.0421	0.0395	0.0422	0.0467	0.0671	0.1011	0.1471	0.1658	0.1865	0.2278	0.2519	0.2754	0.3109	0.3601	0.4102	0.4597	0.4909	0.4917	0.0160	0.0238	0.0273	0.0295	0.0290	0.0181	0.0238	0.0297	0.0359	0.0371	0.0773	0.0912	0.1001	0.1095	0.1128	0.0191	0.0149	0.0146	0.0183	0.0404	0.0769	0.1180	0.0284
$C_{L,a}$	0.2263	0.1979	0.1770	0.1584	-0.0422	-0.0205	0.0103	0.0499	0.1129	0.1686	0.2185	0.2380	0.2591	0.2815	0.2898	0.2969	0.3032	0.2964	0.2859	0.2658	0.2243	0.1865	-0.0803	-0.0717	-0.0586	-0.0499	-0.0474	0.0405	0.0548	0.0668	0.0836	0.0912	0.1596	0.1844	0.1976	0.2141	0.2230	-0.0780	-0.0382	-0.0040	0.0425	0.1030	0.1587	0.2026	-0.0524
C_I	0.0044	0.0047	0.0044	0.0058	0.0041	0.0043	0.0044	0.0059	0.0061	0.0063	0.0069	0.0065	0.0047	0.0052	0.0046	0.0045	0.0045	0.0058	0.0064	0.0067	0.0063	0.0100	0.0004	0.0008	0.0011	0.0016	0.0017	0.0019	0.0012	0.0014	0.0017	0.0018	-0.0004	-0.0003	0.0002	0.0008	0.0011	0.0002	-0.0001	-0.0003	0.0017	0.0003	-0.0005	-0.0002	0.0016
<i>C</i> ,	-0.0001	0.0000	-0.0016	-0.0037	0.0594	0.0596	0.0597	0.0550	0.0578	0.0607	0.0588	0.0587	0.0617	0.0584	0.0592	0.0595	0.0619	0.0646	0.0656	0.0652	0.0662	0.0752	0.0000	0.0073	0.0145	0.0239	0.0279	-0.0031	0.0026	0.0097	0.0197	0.0253	0.0012	0.0059	0.0133	0.0232	0.0280	0.0012	0.0013	9000'0	-0.0030	-0.0003	0.0015	-0.0016	0.0246
C_{Y}	0.0031	0.0035	0.0078	0.0150	-0.0919	-0.0928	-0.0941	-0.0786	-0.0890	-0.0978	-0.0897	-0.0919	-0.1150	-0.1066	-0.1116	-0.1130	-0.1196	-0.1255	-0.1281	-0.1266	-0.1293	-0.1509	-0.0019	-0.0105	-0.0230	-0.0402	-0.0475	0.0104	0.0028	-0.0102	-0.0297	-0.0419	-0.0034	-0.0070	-0.0214	-0.0405	-0.0502	-0.0033	-0.0035	-0.0015	0.0099	0.0014	-0.004	0.0058	-0.0435
<i>C</i> [#]	-0.5895	-0.6104	-0.6716	-0.7172	-0.1032	-0.1431	-0.1969	-0.2720	-0.3750	-0.4702	-0.5679	-0.6044	-0.6511	-0.7108	-0.7362	-0.7636	-0.7997	-0.8374	-0.8784	-0.9189	-0.9341	-0.9133	0.1115	0.0813	0.0504	0.0152	-0.0010	-0.0799	-0.1183	-0.1515	-0.1966	-0.2193	-0.2653	-0.3197	-0.3561	-0.4023	-0.4267	0.1102	0.0556	0.0020	-0.0819	-0.1758	-0.2648	-0.3453	0.0189
$C_{(D-F)}$	0.3546	0.3899	0.4474	0.4879	-0.5929	-0.5843	-0.5662	-0.5459	-0.4945	-0.4369	-0.3671	-0.3301	-0.3042	-0.2392	-0.1888	-0.1483	-0.0888	0.0041	0.1053	0.2075	0.2884	0.3214	0.0160	-0.0452	-0.1118	-0.1965	-0.2493	0.0181	-0.0403	-0.1005	-0.1766	-0.2243	0.0773	0.0324	-0.0187	-0.0830	-0.1252	0.0191	0.0149	0.0146	0.0183	0.0404	0.0769	0.1180	-0.1960
C_L	0.2263	0.1979	0.1770	0.1584	0.0393	0.1152	0.1995	0.2925	0.4019	0.5075	0.6085	0.6413	0.7083	0.7562	0.7699	0.7924	0.8229	0.8544	0.8701	0.8733	0.8647	0.8385	-0.0803	-0.0618	-0.0413	-0.0209	-0.0114	0.0405	0.0820	0.1194	0.1702	0.1982	0.1596	0.2224	0.2716	0.3346	0.3724	-0.0780	-0.0382	-0.0040	0.0425	0.1030	0.1587	0.2026	-0.0236
NPR	0.98	86.0	0.97	0.97	5.25	4.25	4.26	4.24	4.26	4.25	4.25	4.25	4.26	4.26	4.26	4.25	4.25	4.25	4.25	4.25	4.24	4.24	0.99	2.01	3.00	4.25	2.00	0.99	2.00	3.00	4.26	5.01	0.97	2.00	3.00	4.25	5.01	0.99	0.99	0.99	0.99	0.98	0.97	96.0	4.26
α, deg	55.02	59.99	65.01	68.31	70.0	4.98	86.6	14.97	19.94	24.91	29.88	31.83	34.98	37.97	39.96	41.98	44.94	49.98	54.95	59.97	4.98	67.87	0.10	0.08	0.04	0.02	0.01	14.98	14.93	14.92	14.88	14.91	24.84	24.83	24.84	24.73	24.76	0.01	5.05	10.00	15.00	19.90	24.85	29.82	0.01
M	0.298	0.298	0.298	0.300	0.298	0.298	0.299	0.298	0.300	0.299	0.297	0.298	0.300	0.300	0.303	0.302	0.301	0.300	0.301	0.301	0.298	0.297	0.499	0.499	0.499	0.499	0.500	0.498	0.499	0.499	0.498	0.498	0.499	0.498	0.499	0.500	0.500	0.502	0.498	0.501	0.499	0.501	0.497	0.495	0.502

	$C_{l,a}$	-0.0001	-0.0003	0.0011	0.0008	0.0008	0.0008
	$C_{n,a}$	0.0008	0.0003	-0.0030	0.0004	0.0021	0.0001
	$C_{Y,a}$	-0.0020	-0.0009	0.0083	-0.0013	-0.0076	-0.0002
	$C_{m,a}$	0.0283	-0.0132	-0.1101	-0.2108	-0.3087	-0.4013
	$C_{D,a}$	0.0264	0.0273	0.0318	0.0563	0.0951	0.1417
	$C_{L,a}$	-0.0195	0.0003	0.0582	0.1227	0.1836	0.2354
oncluded	C_{I}	0.0016	0.0014	0.0029	0.0024	0.0024	0.0024
Table 18. Conclude	ڻ	0.0239	0.0233	0.0202	0.0235	0.0253	0.0233
	C_{Y}	-0.0412	-0.0399	-0.0311	-0.0406	-0.0469	-0.0398
	C_{m}	-0.0310	-0.0722	-0.1698	-0.2703	-0.3681	-0.4611
	$C_{(D-F)}$	-0.1962	-0.1895	-0.1807	-0.1472	-0.0984	-0.0419
	C_L	0.0289	0.0676	0.1450	0.2273	0.3050	0.3737
	NPR	4.26	4.25	4.25	4.24	4.27	4.26
	α, deg	4.98	9.94	14.92	19.90	24.80	29.69
	M	0.500	0.500	0.498	0.498	0.500	0.498

Table 19. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 25^{\circ}; \, \delta_{B,E} = 25^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

	($C_{l,a}$	-0.0009	-0.0016	-0.0026	-0.003	-0.0021	-0.0030	-0.0035	-0.0019	-0.0027	-0.0034	-0.0038	-0.0006	-0.0021	-0.0008	-0.0003	-0.0012	0.0010	0.0019	-0.0047	-0.0048	-0.0036	-0.0032	-0.0031	-0.0024	-0.0025	-0.0003	-0.0002	-0.0004	-0.0009	-0.0013	0.0016	0.0001
	ţ	$C_{n,a}$	0.0003	-0.0017	0.0036	6.00.0	-0.0085	-0.0085	6600.0-	-0.0001	-0.0033	-0.0007	-0.0017	-0.0007	0.0016	-0.0018	-0.0011	0.0003	0.0019	-0.0012	-0.0001 40004	-0.0008	-0.0039	-0.0015	0.0002	-0.0020	-0.0028	0.0012	0.0019	0.0018	0.0013	-0.0008	-0.0030	-0.0037
C _l 0.0001 0.0003 0.0003	($C_{Y,a}$	-0.0002	0.0015	0.0056	0.0018	0.0218	0.0202	0.0246	-0.0037	0.0058	-0.0032	-0.0010	0.0043	0.0000	0.0022	0.0000	-0.0047	0.0022	0.001	-0.0030	-0.0026	0.0071	9000:0-	-0.0052	0.0020	0.0039	-0.0053	-0.0066	9900.0-	-0.0043	-0.0002	0.0078	0.0097
C _n 0.0017 0.0032 0.0042	Ç	$C_{m,a}$	0.1000	0.0652	0.0297	0.0978	-0.1059	-0.1525	-0.1738	-0.2661	-0.3156	-0.3690	-0.3990	0.0980	-0.0223	-0.0869	-0.1780	-0.2625	0.3442	0.739	-0.0346	-0.0961	-0.1795	-0.2972	-0.3989	-0.4984	-0.5402	0.1008	0.0910	0.0746	0.0653	0.0662	-0.0858	-0.1122
$C_{F,S}$ -0.0027 -0.0054 -0.0074	ζ	$C_{D,a}$	0.0141	-0.0110	-0.0042	-0.0175	-0.0031	0.0132	0.0199	0.0380	0.0646	0.0854	0.0989	0.0095	-0.0239	-0.0176	0.0028	0.0382	0.0782	0.1034	0.0072	0.0157	0.0278	0.0575	0.1036	0.1554	0.1822	0.0004	0.0095	0.0136	0.0163	0.0149	0.0042	0.0148
C _m -0.0048 -0.0079 -0.0111	teristics	$C_{L,a}$	-0.0701	-0.0412	-0.0108	0.0700	0.0679	0.1055	0.1226	0.1787	0.2044	0.2442	0.2659	-0.0676	0.0266	0.0643	0.1194	0.1735	0.2203	-0.0101	0.0339	0.0735	0.1228	0.1991	0.2618	0.3159	0.3371	-0.0698	-0.0647	-0.0512	-0.0441	-0.0441	0.0500	0.0670
$C_{F,N}$ 0.0027 0.0039 0.0057	(b) Aeropropulsive performance characteristics	5	-0.0009	0.0004	0.0012	-0.0013	-0.0001	0.0000	0.0021	-0.0019	-0.0007	0.0003	0.0017	-0.0006	-0.0021	-0.0008	-0.0003	-0.0012	0.0010	0.0019	9000:0	9000'0	0.0018	0.0023	0.0024	0.0030	0.0030	-0.0003	0.0005	0.0010	0.0010	0.0010	0.0016	0.0008
$C_{F,j}$ -0.0105 -0.0211 -0.0322	ulsive perfon	ڻ	0.0003	0.0260	0.0476	-0.0019	0.0189	0.0430	0.0618	-0.0001	0.0240	0.0499	0.0697	-0.0007	0.0016	-0.0018	-0.0011	0.0003	0.0019	0.0693	0.0694	0.0694	0.0663	0.0695	0.0725	0.0693	0.0687	0.0012	0.0118	0.0200	0.0267	0.0288	-0.0030	0.0061
δ _v , deg -14.60 -14.29 -12.99	(b) Aeroprop	ک	-0.0002	0.0424	00807 10809	0.0018	-0.0215	-0.0658	-0.1028	-0.0037	-0.0374	-0.0879	-0.1278	0.0043	0.0000	0.0022	0.0000	0.0047	0.0022	-0.1259	-0.1271	-0.1273	-0.1176	-0.1265	-0.1336	-0.1245	-0.1230	-0.0053	-0.0221	-0.0371	-0.0492	-0.0539	0.0078	-0.0059
δ_p , deg 14.65 10.51 10.08	ζ	ٿ	0.1000	-0.0122	-0.03e/ -0.1509	-0.0918	-0.1825	-0.2794	-0.3636	-0.2661	-0.3919	-0.4939	-0.5881	0.0980	-0.0223	-0.0869	-0.1780	-0.2023	-0.3442	-0.1624	-0.2196	-0.2819	-0.3652	-0.4849	-0.5903	-0.6870	-0.7292	0.1008	0.0636	0.0297	-0.0017	-0.0142	-0.0858	-0.1397
$F_j F_i$ 0.5904 0.6355 0.6573	Ç	$C_{(D-F)}$	0.0141	-0.1794	10.3404 10.5643	-0.0175	-0.1527	-0.2972	-0.4965	0.0380	-0.0677	-0.1903	-0.3668	0.0095	-0.0239	-0.0176	0.0028	0.0362	0.0782	-0.5454	-0.5281	-0.5082	-0.4768	-0.4298	-0.3670	-0.2784	-0.2395	0.0004	-0.0500	-0.1060	-0.1812	-0.2302	0.0042	-0.0392
$F_{\mu}F_{i}$ 0.6293 0.6663 0.6847	Ç	75	-0.0701	0.0028	0.0516	0.0700	0.1530	0.2533	0.3629	0.1787	0.3137	0.4403	0.5904	-0.0676	0.0266	0.0643	0.1194	0.1733	0.2203	0.0869	0.1773	0.2639	0.3578	0.4795	0.5901	0.6780	0.7153	-0.0698	-0.0491	-0.0289	-0.0092	-0.0013	0.0500	0.0976
NPR 2.00 3.00 4.02	dan	Z Z	1.00	2.00	2.98 4.28	0.99	2.00	2.99	4.27	0.99	2.00	2.99	4.29	90.5	90.5	66.0	96.0 96.0	26.0	8.0	4.25	4.24	4.27	4.25	4.24	4.25	4.25	4.24	0.99	2.00	2.98	4.24	5.00	0.98	2.01
	5	a, deg	0.05	0.0	6.6	14.97	14.97	14.95	14.93	24.94	24.93	24.90	24.85	0.03	9.98	15.02	20.00	20.00	29.92 32.46	-0.05	4.97	96.6	14.94	19.89	24.88	29.82	31.86	0.03	90:0	0.0	-0.05	0.03	14.98	14.95
	2	Z.	0.298	0.298	0.298	0.299	0.299	0.298	0.299	0.300	0.300	0.300	0.300	0.299	0.300	0.299	0.298	0.300	0.298	0.301	0.301	0.302	0.301	0.299	0.297	0.299	0.298	0.502	0.501	0.501	0.501	0.501	0.500	0.500

Table 19. Concluded

	$C_{l,a}$	-0.0004	-0.0009	-0.0011	-0.0007	-0.0012	-0.0016	-0.0017	-0.0018	0.0001	-0.0001	-0.0006	0.0014	0.0014	0.0000	-0.0007	-0.0007	-0.0019	-0.0018	-0.0020	-0.0006	-0.0010	-0.0010	-0.0003
	$C_{n,a}$	-0.0033	-0.0026	-0.0042	0.0019	90000	0.0016	0.0023	0.0010	0.0007	0.0008	0.0015	-0.0022	-0.0024	0.0009	0.0023	-0.0006	0.0008	0.0011	0.0009	-0.0027	-0.0002	0.0017	-0.0011
	$C_{Y,a}$	0.0078	0.0058	0.0089	-0.0077	-0.0043	-0.0075	-0.0093	-0.0074	-0.0017	-0.0019	-0.0067	0.0050	0900.0	-0.0040	-0.0092	0.0007	-0.0031	-0.004	-0.0045	0.0063	-0.0007	-0.0074	0.0027
	$C_{m,a}$	-0.1340	-0.1533	-0.1579	-0.2701	-0.3101	-0.3393	-0.3594	-0.3678	0.1062	0.0529	-0.0030	-0.0860	-0.0857	-0.1810	-0.2686	-0.3509	0.0589	0.0078	-0.0462	-0.1480	-0.2474	-0.3417	-0.4328
	$C_{D,a}$	0.0219	0.0273	0.0274	0.0649	0.0805	0.0925	0.1006	0.1026	0.0173	0.0145	0.0004	0.0036	0.0046	0.0274	0.0641	0.1072	0.0152	0.0144	0.0179	0.0270	0.0529	0.0936	0.1406
	$C_{L,a}$	0.0835	0.0973	0.1027	0.1696	0.1960	0.2172	0.2307	0.2385	-0.0753	-0.0363	0.0021	0.0494	0.0494	0.1121	0.1678	0.2142	-0.0387	-0.0032	0.0296	0.0931	0.1566	0.2148	0.2653
ncinaea	C_{l}	0.0010	0.0011	0.0011	-0.0007	-0.0005	-0.0002	0.0003	0.0005	0.0001	-0.0001	-0.0006	0.0014	0.0014	0.000	-0.0007	-0.0007	0.000	0.0002	-0.0001	0.0014	0.0010	0.0010	0.0017
1 able 19. Col	<i>C</i> _n	0.0150	0.0230	0.0256	0.0019	0.0105	0.0202	0.0279	0.0310	0.0007	0.0008	0.0015	-0.0022	-0.0024	0.000	0.0023	9000:0-	0.0261	0.0264	0.0260	0.0227	0.0254	0.0270	0.0246
	C_{Y}	-0.0228	-0.0396	-0.0453	-0.0077	-0.0198	-0.0387	-0.0546	-0.0619	-0.0017	-0.0019	-0.0067	0.0050	0900:0	-0.0040	-0.0092	0.0007	-0.0481	-0.0493	-0.0492	-0.0389	-0.0459	-0.0523	-0.0430
	C_{m}	-0.1791	-0.2210	-0.2389	-0.2701	-0.3374	-0.3853	-0.4269	-0.4493	0.1062	0.0529	-0.0030	-0.0860	-0.0857	-0.1810	-0.2686	-0.3509	-0.0083	-0.0592	-0.1128	-0.2154	-0.3148	-0.4087	-0.5009
	$C_{(D-F)}$	-0.0885	-0.1569	-0.2002	0.0649	0.0330	-0.0097	-0.0658	-0.1051	0.0173	0.0145	0.0004	0.0036	0.0046	0.0274	0.0641	0.1072	-0.1831	-0.1797	-0.1698	-0.1562	-0.1222	-0.0713	-0.0165
	C_L	0.1359	0.1827	0.2077	0.1696	0.2351	0.2894	0.3461	0.3818	-0.0753	-0.0363	0.0021	0.0494	0.0494	0.1121	0.1678	0.2142	-0.0036	0.0489	0.0979	0.1781	0.2572	0.3294	0.3959
	NPR	2.99	4.26	5.01	0.97	1.99	3.02	4.25	5.03	0.99	0.99	0.99	0.99	0.98	0.98	0.97	96.0	4.25	4.26	4.25	4.25	4.25	4.25	4.26
	α, deg	14.87	14.86	14.88	24.85	24.82	24.75	24.73	24.73	0.05	5.03	10.05	14.98	14.97	19.91	24.84	29.81	0.01	4.99	96.6	14.88	19.86	24.77	29.70
	W	0.499	0.500	0.499	0.499	0.498	0.498	0.499	0.499	0.503	0.499	0.498	0.505	0.499	0.503	0.498	0.498	0.501	0.502	0.503	0.500	0.500	0.502	0.498

Table 20. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 15^{\circ}; \delta_{B} = 15^{\circ}; \delta_{E} = 10^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

(a) Static (M = 0) performance characteristics

		$C_{l,a}$	-0.0010	-0.0013	0.0017	0.000	-0.0001	-0.0003	-0.0001	0.0007	0.001	0.0013	-0.0012	-0.0010	-0.0006	-0.0002	0.0003	0.0006	0.0015	-0.0017	-0.0012	-0.0010	0.0001	0.0014	0.0017	0.0024	0.0024 0.0004	\$000 G	-0.0009	-0.0010	0.0009
		$C_{n,a}$	0.0029	0.0036	0.0034	-0.0020	-0.0019	0.0003	0.0014	0.0013	0.0010	0.0057	0.0013	0.0010	0.0002	-0.0031	-0.0030	0.0019	0.0035	0.0017	0.0018	0.0024	0.0010	0.0024	0.0052	1900	0.0044 0.0073	0.0028	0.0032	0.0027	0.0026
C_I 0.0000 0.0000 0.0001		$C_{Y,a}$	-0.0077	-0.0085	0.0073	0.0018	0.0106	0.0036	0.0019	0.0073	0.0009	-0.0126	-0.0007	0.0000	0.0023	0.0130	0.0123	0.0092	0.0141	0.0017	0.0013	-0.0017	0.0040	0.0010	0.0103	0.0063	-0.W82	92000-	-0.0082	-0.0055	-0.0045 0.0098
C _n 0.0003 0.0005 0.0012		$C_{m,a}$	0.1028	0.0938	0.0829	-0.0658	-0.0714	-0.0807	-0.0953	-0.2513	-0.2067	-0.2973	0.1034	0.0517	-0.0008	-0.0669	-0.1636	-0.2519	-0.3338	0.0797	0.0260	-0.0287	-0.0963	-0.2061	0.3005	0.3930	0.4380	0.1004	0.0937	0.0842	0.0780
$C_{F,S}$ -0.0003 -0.0020		$C_{D,a}$	0.0166	0.0261	0.0316	0.0422	0.0542	0.0614	0.0671	0.1119	0.1240	0.1364	0.0117	0.0192	0.0297	0.0443	0.0730	0.1149	0.1606	0.0338	0.0413	0.0539	0.0671	0.0971	0.1584	0.1003	0.2148	0.0228	0.0256	0.0271	0.0281 0.0315
C _m -0.0024 -0.0068	eristics	$C_{L,a}$	-0.0764	0.0690	-0.0601	0.0252	0.0237	0.0283	0.0370	0.1283	0.1323	0.1471	-0.0776	-0.0399	-0.0078	0.0261	0.0813	0.1289	0.1663	-0.0599	-0.0239	0.0053	0.0384	0.1009	0.1504	0.1903	C102.0 -0.0762	-0.0716	-0.0662	-0.0594	-0.0554 0.0424
$C_{F,N}$ 0.0015 0.0023 0.0035	(b) Aeropropulsive performance characteristics	C_I	-0.0010	-0.0016	-0.0014 -0.0014	-0.0001	-0.0003	-0.0001	0.0010	0.0007	0.0009	0.0024	-0.0012	-0.0010	-0.0006	-0.0002	0.0003	0.0006	0.0013	-0.0006	-0.0003	-0.0001	0.0011	0.0024	0.002/	0.0034	4000	-0.0007	-0.0008	-0.0005	0.0004
$C_{F,j}$ -0.0163 -0.0302 -0.0435	ılsive perforn	<i>C</i> ,	0.0029	0.0073	0.0119	-0.0020	0.0018	0.0089	0.0240	0.0013	0.00	0.0284	0.0013	0.0010	0.0002	-0.0031	-0.0030	-0.0019	-0.0035	0.0241	0.0242	0.0250	0.0236	0.0252	0.0281	0.076	0.0270	0.0042	0.0064	0.0110	0.0129 -0.0029
δ _y , deg -1.02 -1.29 -2.61	(b) Аегоргори	C_{Y}	-0.0077	-0.0131	-0.0179	0.0091	0900.0	6900'0-	-0.0347	0.0073	-0.0039 -0.0175	-0.0492	-0.0007	0.0000	0.0023	0.0130	0.0123	0.0092	0.0141	-0.0345	-0.0350	-0.0381	-0.0326	-0.03/8	0.04/3 52/3	0.0442	-0.0 2 3	-0.0093	-0.0121	-0.0189	-0.0215 0.0098
δ_p , deg 5.13 4.44 4.66		<i>C</i> ,,	0.1028	0.0554	0.0154	-0.0658	-0.1099	-0.1482	-0.2132	-0.2513	-0.3496	-0.4153	0.1034	0.0517	-0.0008	-0.0669	-0.1636	-0.2519	-0.3338	-0.0370	-0.0907	-0.1460	0.2144	-0.3250	-0.4195 -0.5151	0.5506	0.22%0	0.0862	0.0688	0.0411	0.0280 -0.0833
FyF _i 0.9260 0.9194 0.9071			0.0166																												-0.2798 0.0315
F_{μ}/F_{i} 0.9299 0.92111		c_L	-0.0764	-0.0462	0.00236	0.0252	0.1121	0.1848	0.2876	0.1283	0.3730	0.5150	-0.0776	-0.0399	-0.0078	0.0261	0.0813	0.1289	0.1003	-0.0001	0.0997	0.1927	0.2889	0.4138	0.5210	0.5654	-0.0762	-0.0632	-0.0528	-0.0374	-0.0300 0.0424
NPR 1.99 3.01 3.99		NPR	1.00	2.01	2.99 4.26	0.99	2.01	3.00	4.25	0.99 10.0	3.00	4.25	00:1	1.00	9:1	97.0	0.99	66.0	0.00	4.24	4.25	4.25	4.25	47.74	4.25 25 25	25.4	66.0	2.01	2.99	4.26	4.74 0.99
		α, deg	0.00	0.00	0.0	14.99	15.01	15.01	14.99	25.01 24.08	24.98	24.96	0.00	5.02	10.00	15.01	20.00	20.02	32.62	-0.03	4.98	9.98	14.97	19.91	26.95	27.77	-0.01	-0.01	-0.01	-0.03	-0.04 14.99
		M	0.302	0.303	0.303	0.303	0.303	0.303	0.301	0.300	0.300	0.301	0.301	0.301	0.302	0.301	0.300	0.299	0.500	0.302	0.303	0.302	0.301	667.0	0.500	0.200	0.498	0.498	0.498	0.499	0.499
																															57

Table 20. Concluded

$C_{l,a}$!	0.0009	0.0000	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	0.0010	-0.0008	90000	-0.0003	90000	90000	0.0007	0.0013	-0.0010	-0.0007	-0.0007	0.0010	0.0011	0.0011	0.0013	-0.0004	-0.000	-0.0005	-0.0005	-0.0005	-0.0005	0.0003	0.0003	0.0003	0.0002	0.0002	0.0002	-0.0004	-0.0003	-0.0003	0.0003	0.0007	-0.0007	-0.0003	-0.0006	0.0004	0.0010
C,,,a	1	-0.0013	-0.0008	-0.0002	0.0000	0.0009	0.0022	0.0033	0.0044	0.0054	0.0020	0.0018	0.0007	-0.0024	-0.0003	0.0010	-0.0028	0.0025	0.0021	0.0020	-0.0002	0.0037	0.0045	0.0020	0.0017	0.0028	0.0034	0.0035	0.0037	0.0038	0.0000	0.0003	0.0010	0.0015	0.0020	0.0024	0.0024	0.0020	0.0010	-0.0002	-0.0003	0.0031	0.0029	0.0020	0.0021	0.0025
$C_{Y,a}$		0.0054	0.0038	0.0024	-0.0002	-0.0015	-0.0055	-0.0089	-0.0124	-0.0153	-0.0056	-0.0051	-0.0015	0.0078	0.0017	-0.0026	0.0105	-0.0046	-0.0037	-0.0039	0.0022	-0.0100	-0.0129	-0.0044	-0.0050	-0.0079	-0.0094	-0.0089	-0.0089	-0.0088	0.0003	-0.0008	-0.0026	-0.0040	-0.0053	-0.0065	-0.0072	-0.0061	-0.0030	0.0004	0.0013	-0.0082	-0.0075	-0.0054	-0.0059	-0.0072
C, m.a		-0.0927	-0.0986	-0.1098	-0.1165	-0.2643	-0.2800	-0.2878	-0.3003	-0.3092	0.1063	0.0548	0.0030	-0.0829	-0.1756	-0.2626	-0.3442	0.0845	0.0353	-0.0151	-0.1090	-0.2042	-0.3002	-0.3909	0.1128	0.1078	0.1044	0.0981	0.0927	0.0879	-0.0947	-0.1010	-0.1063	-0.1135	-0.1200	-0.1261	0.1125	0.0634	0.0115	-0.0944	-0.1805	0.0979	0.0469	-0.0002	-0.1145	-0.2020
$C_{D,a}$		0.0359	0.0394	0.0417	0.0437	0.0956	0.1001	0.1031	0.1074	0.1101	0.0170	0.0178	0.0223	0.0318	0.0575	0.0959	0.1399	0.0258	0.0264	0.0322	0.0416	0.0672	0.1078	0.1538	0.0196	0.0215	0.0229	0.0246	0.0249	0.0253	0.0299	0.0310	0.0333	0.0351	0.0366	0.0375	0.0196	0.0182	0.0202	0.0300	0.0544	0.0231	0.0222	0.0241	0.0343	0.0593
$C_{L,a}$. !	0.0473	0.0503	0.0576	0.0614	0.1514	0.1585	0.1612	0.1686	0.1736	-0.0770	-0.0397	-0.0078	0.0422	0.0991	0.1503	0.1917	-0.0602	-0.0270	0.0013	0.0564	0.1130	0.1685	0.2146	-0.0808	-0.0768	-0.0741	-0.0693	-0.0661	-0.0630	0.0516	0.0550	0.0579	0.0621	0.0660	0.0697	-0.0803	-0.0445	-0.0129	0.0518	0.1054	-0.0692	-0.0335	-0.0075	0.0625	0.1161
c_l	6	0.0008	0.0010	0.0013	0.0014	0.0010	0.0009	0.0010	0.0014	0.0015	-0.0008	-0.0006	-0.0003	9000:0	9000.0	0.0007	0.0013	9000.0	-0.0003	-0.0003	0.0014	0.0015	0.0015	0.0017	-0.0004	-0.0004	-0.0004	-0.0003	-0.0003	-0.0002	0.0003	0.0003	0.0003	0.0003	0.0004	0.0005	-0.0004	-0.0003	-0.0003	0.0003	0.0007	-0.0004	-0.0002	-0.0004 	0.0006	0.0011
<i>C</i> ,	6	0.0000	0.0024	0.0081	0.0112	0.0009	0.0036	0.0064	0.0125	0.0156	0.0020	0.0018	0.0007	-0.0024	-0.0003	0.0010	-0.0028	0.0108	0.0103	0.0101	0.0081	0.0118	0.0127	0.0103	0.0017	0.0035	0.0050	0.0077	0.0095	0.0109	0.0000	0.0010	0.0026	0.0057	0.0078	0.0095	0.0024	0.0020	0.0010	-0.0002	-0.0003	0.0073	0.0071	0.0062	0.0063	0.0067
C_{Y}		0.0037	-0.0001	-0.0110	-0.0174	-0.0015	-0.0071	-0.0128	-0.0255	-0.0322	-0.0056	-0.0051	-0.0015	0.0078	0.0017	-0.0026	0.0105	-0.0179	-0.0169	-0.0170	-0.0111	-0.0232	-0.0262	-0.0178	-0.0050	-0.0087	-0.0114	-0.0157	-0.0185	-0.0208	0.0003	-0.0016	-0.0046	-0.0107	-0.0150	-0.0185	-0.0072	-0.0061	-0.0030	0.0004	0.0013	-0.0150	-0.0143	-0.0122	-0.0127	-0.0140
رً.	0	0.1068	-0.1237	-0.1528	-0.1667	-0.2643	-0.2940	-0.3123	-0.3426	-0.3586	0.1063	0.0548	0.0030	-0.0829	-0.1756	-0.2626	-0.3442	0.0416	-0.0073	-0.0575	-0.1519	-0.2466	-0.3428	-0.4340	0.1128	0.1006	0.0918	0.0763	0.0654	0.0561	-0.0947	-0.1081	-0.1190	-0.1353	-0.1474	-0.1580	0.1125	0.0634	0.0115	-0.0944	-0.1805	0.0761	0.0250	-0.0220	-0.1362	-0.2238
$C_{(D-F)}$		-0.0526	-0.1253	-0.2135	-0.2479	0.0956	0.0195	-0.0455	-0.1239	-0.1548	0.0170	0.0178	0.0223	0.0318	0.0575	0.0959	0.1399	-0.2439	-0.2380	-0.2266	-0.2128	-0.1753	-0.1258	-0.0693	0.0196	-0.0262	-0.0649	-0.1123	-0.1416	-0.1656	0.0299	-0.0137	-0.0501	0.0944	-0.1211	-0.1427	0.0196	0.0182	0.0202	0.0300	0.0544	-0.1139	-0.1137	-0.1086	-0.0949	-0.0654
C_L		0.0/9/	0.1084	0.1489	0.1660	0.1514	0.2052	0.2450	0.3002	0.3248	-0.0770	-0.0397	-0.0078	0.0422	0.0991	0.1503	0.1917	-0.0382	0.0181	0.0691	0.1474	0.2244	0.3016	0.3688	-0.0808	-0.0726	-0.0672	-0.0582	-0.0522	-0.0469	0.0516	0.0714	0.0874	0.1084	0.1227	0.1346	-0.0803	-0.0445	-0.0129	0.0518	0.1054	-0.0580	-0.0103	0.0273	0.1087	0.1733
NPR		2.00	3.01	4.25	4.75	0.97	2.01	3.00	4.25	4.76	0.99	0.99	0.99	66.0	86.0	0.97	96.0	4.25	4.25	4.25	4.25	4.25	4.25	4.26	0.98	2.00	3.01	4.25	2.00	2.60	0.97	5.00	3.01	4.25	5.01	2.61	0.98	0.98	0.98	0.97	96.0	4.26	4.25	4.26	4.26	4.26
α, deg		15.00	15.00	14.99	14.99	25.02	24.99	24.98	24.96	24.97	0.00	2.00	10.01	14.99	20.01	24.99	30.01	-0.05	4.98	10.00	14.99	19.97	24.99	29.95	0.01	-0.02	0.01	-0.05	0.0	0.01	15.01	15.00	15.00	14.98	14.99	15.00	0.05	4.98	10.00	15.01	20.01	-0.02	4.99	66.6	14.99	19.99
W	0	0.498	0.498	0.499	0.499	0.503	0.502	0.503	0.503	0.503	0.500	0.501	0.501	0.500	0.502	0.497	0.497	0.499	0.501	0.502	0.500	0.502	0.501	0.499	0.690	0.699	0.705	0.701	0.700	0.698	0.699	0.701	0.700	0.700	0.699	0.699	0.699	0.703	0.698	0.690	0.699	0.701	0.699	0.702	0.701	0./02

Table 21. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 15^{\circ}; \, \delta_{B,E} = 25^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

	C _{l,a} -0.0008 0.0003	0.0003 0.0003 0.0003 0.0004 0.0026	0.0021 0.0010 0.0033 0.0021 0.0015	0.0003 0.0003 0.0003 0.00016 0.0006 0.0008	0.0003 0.0009 0.0003 0.0003 0.0030 0.0030 0.0030 0.0020
	0.0011 0.0018 0.0018	0.0043 0.0064 0.0035 0.0013	0.0023 -0.0043 -0.0002 0.0023 0.0015 0.0032	0.0049 0.0043 0.0064 0.0089 0.0010 0.0010	0.0003
C _I 0.0001 0.0003 0.0004	$C_{Y,a}$ -0.0038 -0.0054	-0.0163 -0.0250 0.0133 0.0118 -0.0015	0.0080 0.0080 0.0140 0.0035 0.0020 0.0134	0.0033 0.0033 0.0033 0.0033 0.0033	0.0128 0.0101 0.0059 0.0098 0.0094 0.0096 0.0096 0.0082 -0.0012
C _n 0.0013 0.0024 0.0036	0.1040 0.0920 0.0604	0.0804 0.0255 -0.0749 -0.0832 -0.1150	0.2576 0.2904 0.3366 0.3366 0.5182 0.5660 0.5996	0.0913 0.0913 0.0913 0.0913 0.0913	0.0822 0.1686 0.2566 0.3383 0.3383 0.3932 0.4318 0.4586 0.5194
C _{F,S} -0.0018 -0.0033 -0.0053	C.D.a 0.0135 0.0227 0.0242	0.0242 0.0311 0.0117 0.0249 0.0340	0.0655 0.0920 0.1078 0.1350 0.2657 0.2831	0.3179 0.3927 0.4054 0.4640 0.0030 0.0026 0.0026	0.0129 0.0304 0.0662 0.1046 0.1311 0.1485 0.1819 0.2061 0.2332 0.2644
C _m -0.0014 -0.0030 -0.0056 eristics	$C_{L,a}$ -0.0747 -0.0633	0.028/ 0.0048 0.0429 0.0730 0.1097	0.1555 0.1699 0.2119 0.2596 0.2748 0.2886	0.2283 0.2002 0.2013 0.2414 0.2639 0.0622 0.017	0.0500 0.0978 0.1537 0.1971 0.2205 0.2173 0.2305 0.2386 0.2502 0.2521
C _{F,N} 0.0007 0.0006 0.0014	-0.0008 0.0016	0.0030 0.0040 0.0003 0.0017 0.0043	0.0003 0.0003 0.0003 0.0021 0.0023 0.0033	0.0040 0.0047 0.0045 0.0041 0.0053 0.0006 0.0008	0.0003 0.0030 0.0030 0.0030 0.0030 0.0030 0.0017 0.0030
$C_{F,j}$ -0.0121 -0.0241 -0.0367 alsive perform	0.0011 0.0219 0.0213	0.0413 0.0670 0.0169 0.0357 0.0632	0.0023 0.0159 0.0377 0.0633 0.0015 0.0404	0.0664 0.0010 0.0231 0.0430 0.0703 0.0010 0.0010	-0.0031 -0.0031 -0.0030 -0.0030 -0.0033 -0.0033 -0.0025 0.0003
δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} -8.63 -0.0121 0.0007 -0.001 -7.69 -0.0241 0.0006 -0.005 -8.27 -0.0367 0.0014 -0.005 (b) Aeropropulsive performance characteristics	Cy -0.0038 -0.0341	-0.0079 -0.1170 -0.0133 -0.0499 -0.1038	0.0080 -0.0148 -0.0558 -0.1045 -0.0051 -0.0444	0.0033 0.0033 0.0033 0.0033 0.0033	0.0128 0.0059 0.0059 0.0098 0.0094 0.0096 0.0000 0.0082 0.0082
_	0.1040 0.0697 0.0136	-0.0729 -0.0749 -0.1058 -0.1618	-0.2576 -0.3128 -0.3843 -0.4946 -0.5182 -0.5940	0.0913 0.0913 0.0913 0.0913 0.0168	-0.0822 -0.1686 -0.2566 -0.3333 -0.333 -0.4318 -0.4586 -0.4919 -0.5748
m m 10		-0.5950 -0.5950 0.0117 -0.1573 -0.3315			0.0129 0.0304 0.0662 0.1046 0.1311 0.1485 0.1819 0.2061 0.2332 0.2644
F_{r}/F_{i} 0.6684 0.7180	C_L -0.0747 -0.0522	0.0299 0.0429 0.1024 0.1804 0.2984	0.1555 0.2600 0.3833 0.5479 0.2526 0.4510 0.6134	0.8270 0.2002 0.4332 0.6284 0.8773 -0.0622 -0.017	0.0500 0.0978 0.1537 0.1971 0.2205 0.2173 0.2305 0.2386 0.2502 0.2521
NPR 2.00 2.99 4.00	1.00 2.00 3.00	2.98 2.98 2.98 2.98	3.00 3.01 3.01 3.00 3.00	2.00 2.00 3.01 1.00 1.00 1.00	86.0 66.0 66.0 66.0 66.0 86.0 86.0 86.0
	0.02 0.05 0.05	14.97 14.97 15.03 14.96	24.95 24.95 24.92 24.91 44.98 44.99	59.99 59.99 59.98 59.98 0.04 5.02	14.99 24.95 29.92 32.49 35.19 37.98 42.00 44.99
:	0.299	0.302 0.302 0.300 0.300 0.300	0.300 0.300 0.300 0.298 0.299	0.299 0.298 0.299 0.299 0.301 0.298	0.298 0.298 0.299 0.297 0.300 0.300 0.299 0.299 0.299

$C_{l,a}$	0.0043	0.004	0.0041	0.0056	-0.0029	-0.0028	-0.0031	-0.0018	-0.0008	-0.0007	0.0003	0.0025	0.0012	0.0014	0.0010	0.0010	0.0010	0.0015	0.0024	0.0030	0.0025	0.0053	0.0006	0.0009	0.0002	0.0003	0.0000	0.0024	0.0014	9000.0	0.0009	0.0006	0.0003	0.0003		0000	0.0010	0.0007	9000.0	0.0026	0.0010	0.0006	0.0003	0.0001
$C_{n,a}$	0.0006	0.0008	-0.0009	-0.0023	0.0012	0.0004	0.0010	-0.0018	0.0013	0.0027	0.0004	-0.0021	0.0031	0.0001	0.0017	0.0022	0.0030	0.0057	0.0077	0.0074	0.0071	0.0144	0.0007	0.0008	0.0021	0.0009	0.0003	-0.0028	-0.0050	-0.0036	-0.0041	0.0041	0.0016	0.0010	0.0034	0.0036	0.0014	0.0014	0.0008	-0.0027	0.0003	0.0014	-0.0011	0.0023
$C_{Y,a}$	0.0000	0.0000	0.0051	0.0098	-0.0071	-0.0041	-0.0072	0.0020	-0.0084	-0.0133	-0.0061	0.0046	-0.0117	-0.0053	-0.0103	-0.0120	-0.0151	-0.0215	-0.0265	-0.0250	-0.0244	-0.0429	-0.0019	-0.0013	-0.0062	-0.0017	-0.0007	0.0089	0.0158	0.0100	0.0121	0.0105	0.0051	0.0034	0.0128	-0.0135	-0.0040	-0.0039	-0.0025	0.0084	9000.0-	-0.0046	0.0037	-0.0060
$C_{m,a}$	-0.5922	-0.6132	-0.6733	-0.7172	0.0239	-0.0207	-0.0634	-0.1337	-0.2399	-0.3333	-0.4278	-0.4551	-0.4812	-0.5423	-0.5735	-0.6002	-0.6361	-0.6705	-0.7064	-0.7488	-0.7566	-0.7386	0.1063	0.1054	0.0916	0.0802	0.0732	-0.0834	-0.0980	-0.1161	-0.1348	-0.1463	-0.26/4	-0.2995	-0.3250	-0.3580	0.1097	0.0551	0.0016	-0.0817	-0.1781	-0.2661	-0.3485	0.0754
$C_{D,a}$	0.3579	0.3935	0.4494	0.4888	0.0335	0.0360	0.0413	0.0460	0.0690	0.1040	0.1490	0.1699	0.1882	0.2314	0.2558	0.2799	0.3154	0.3638	0.4115	0.4615	0.4895	0.4921	0.0131	0.0212	0.0218	0.0278	0.0286	0.0156	0.0239	0.0288	0.0360	0.0381	0.0/48	0.0898	0.0363	0.1148	0.0156	0.0125	0.0124	0.0157	0.0384	0.0752	0.1175	0.0275
$C_{L,a}$	0.2278	0.1987	0.1779	0.1598	0.0050	0.0310	0.0484	0.0852	0.1478	0.2015	0.2509	0.2531	0.2595	0.2816	0.2914	0.2971	0.3038	0.2959	0.2827	0.2626	0.2209	0.1835	-0.0760	-0.0766	-0.0625	-0.0536	-0.0464	0.0433	0.0529	0.0693	0.0819	0.0925	0.1613	0.1829	0.2021	0.2253	-0.0790	-0.0387	-0.0046	0.0417	0.1046	0.1604	0.2052	-0.0486
C_I	0.0043	0.0044	0.0041	0.0056	0.0044	0.0043	0.0040	0.0053	0.0064	0.0064	0.0073	0.0097	0.0050	0.0051	0.0048	0.0047	0.0049	0.0052	0900:0	0.0067	0.0063	0.0091	90000	0.0013	0.0018	0.0029	0.0031	0.0024	0.0018	0.0023	0.0034	0.0037	0.0003	0.0002	0.000	0.0025	0.0010	0.0007	9000:0	0.0026	0.0010	9000:0	0.0003	0.0026
Č,	90000	0.0008	-0.0009	-0.0023	0.0633	0.0611	0.0623	0.0599	0.0630	0.0632	0.0615	0.0592	0.0641	0.0612	0.0630	0.0636	0.0647	0.0670	0.0673	0.0688	0.0687	0.0768	0.0007	0.0080	0.0156	0.0229	0.0275	-0.0028	0.0024	0.0101	0.0179	0.0235	0.0016	0.0084	0.0259	0.0308	0.0014	0.0014	0.0008	-0.0027	0.0003	0.0014	0.0011	0.0240
C_Y	0.0000	0.0000	0.0051	0.0098	-0.1013	-0.0959	-0.1003	-0.0917	-0.1020	-0.1050	-0.0987	-0.0883	-0.1203	-0.1143	-0.1196	-0.1215	-0.1248	-0.1308	-0.1326	-0.1343	-0.1344	-0.1541	-0.0019	-0.0117	-0.0249	-0.0351	-0.0432	0.0089	0.0054	-0.0089	-0.0212	-0.0325	-0.0031	0.0140	-0.0467	-0.0560	-0.0040	-0.0039	-0.0025	0.0084	9000.0	-0.0046	0.0037	-0.0389
<i>C</i>	-0.5922	-0.6132	-0.6733	-0.7172	-0.0771	-0.1187	-0.1631	-0.2339	-0.340	-0.4315	-0.5268	-0.5545	6809.0-	-0.6705	-0.7019	-0.7290	-0.7651	-0.7991	-0.8313	-0.8774	-0.8859	-0.8694	0.1063	0.0974	0.0745	0.0444	0.0258	-0.0834	-0.1061	-0.1334	-0.1705	-0.1941	-0.26/4	0.307	-0.3815	-0.4053	0.1097	0.0551	0.0016	-0.0817	-0.1781	-0.2661	-0.3485	0.0404
$C_{(D-F)}$	0.3579	0.3935	0.4494	0.4888	-0.6074	-0.5851	-0.5785	-0.5633	-0.5217	-0.4514	-0.3844	-0.3529	-0.3237	-0.2583	-0.2190	-0.1785	-0.1179	-0.0210	0.0865	0.1790	0.2604	0.2941	0.0131	-0.0474	-0.1167	-0.2001	-0.2542	0.0156	0.0416	-0.1054	-0.1811	-0.2340	0.0748	0.0283	-0.0949	-0.1364	0.0156	0.0125	0.0124	0.0157	0.0384	0.0752	0.1175	7.1900
C_L	0.2278	0.1987	0.1779	0.1598	0.0316	0.1109	0.1841	0.2753	0.3896	0.4875	0.5874	0.6111	0.6927	0.7427	0.7701	0.7935	0.8245	0.8505	0.8513	0.8752	0.8597	0.8414	-0.0760	-0.0726	-0.0589	0.0441	-0.0333	0.0433	0.0745	0.1087	0.1492	0.1/84	0.1013	0.2136	0.3198	0.3554	-0.0790	-0.0387	-0.0046	0.0417	0.1046	0.1604	0.2052	-0.0393
NPR	96.0	0.98	0.97	0.97	4.27	4.21	4.25	4.24	4.23	4.25	4.25	4.24	4.25	4.26	4.25	4.26	4.25	4.26	4.26	4.26	4.25	4.25	0.60	66.1	3.00	4.25	2.00	0.98	1.99	3.01	4.24	2. S	7 6	30.5	4.27	2.00	0.09	0.99	86.0	0.98	0.98	0.97	96.7	4.20
α, deg	54.99	90.09	64.99	68.28	0.01	4.99	66.6	14.97	16.61	24.89	29.89	32.05	34.96	38.00	39.95	41.99	44.95	49.96	54.97	29.96	4 .99	26.79	0.05	0.03	0.02	0.03	0.01	14.98	14.94	14.93	14.87	14.8/	\$ 6.5 6.5 6.5 6.5 6.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7.5 7	24.62 24.70	24.75	24.74	0.05	5.03	10.02	15.00	16.91	24.86	29.83	5 .5
M	0.302	0.297	0.300	0.299	0.299	0.300	0.299	0.298	0.298	0.302	0.300	0.299	0.300	0.300	0.299	0.299	0.298	0.299	0.304	0.299	0.298	0.296	0.502	0.499	0.500	0.499	0.499	0.499	0.498	0.498	0.500	0.499	0.490	0.499	0.498	0.499	0.500	0.500	0.500	0.499	0.500	0.498	0.497	0.50

	$C_{l,a}$	0.0001	-0.0003	0.0018	0.0013	0.0013	0.0020
	$C_{n,a}$	0.0012	0.0001	0.0041	0.0012	0.0032	-0.0004
	$C_{Y,a}$	-0.0025	0.0003	0.0122	-0.0036	-0.0111	0.0009
	$C_{m,a}$	0.0203	-0.0221	-0.1122	-0.2107	-0.3090	-0.4358
	$C_{D,a}$	0.0255	0.0275	0.0317	0.0532	0.0924	0.1582
	$C_{L,a}$	-0.0119	0.0089	0.0603	0.1220	0.1825	0.2497
ncluded	C_I	0.0026	0.0024	0.0044	0.0038	0.0038	0.0045
Table 21. Concluded	<i>C</i> ,	0.0230	0.0222	0.0179	0.0231	0.0252	0.0220
	$C_{\mathbf{Y}}$	-0.0354	-0.0332	-0.0212	-0.0369	-0.0443	-0.0331
	<i>C</i> _m	-0.0149	-0.0581	-0.1480	-0.2463	-0.3445	-0.4721
	$C_{(D-F)}$	-0.1972	-0.1956	-0.1859	-0.1567	-0.1089	-0.0333
	C_L	0.0174	0.0578	0.1280	0.2078	0.2858	0.3801
	NPR	4.22	4.28	4.25	4.25	4.24	4.23
	a, deg	5.14	10.00	14.93	19.87	24.82	31.90
	M	0.501	0.502	0.500	0.501	0.501	0.494

Table 22. Static and Aeropropulsive Performance Characteristics at Afterburning Power

							•	•	•	•															,	,	,											
						$C_{n,a}$	0.0028	0.0029	0.0010	0.0000	0.0016	9000	3		0.0028	0.0037	0.0041	0.0001	0.0023	0.0028	0.0031	0.000	0.004	0.0034	0.0014	0.0011	0.0003	-0.0025	-0.0027	-0.0017	-0.0026	-0.0029	-0.0022	-0.0016	-0.0023	-0.0032	0.0010	0.0010
		C_1	0.0000	0.0002		$C_{Y,a}$	-0.0073	-0.0062	0.0011	0.0039	0.00/4	0.0053	2000	0.0065	09000	-0.0083	-0.0102	-0.0001	-0.0083	-0.0114	-0.0139	0.0003	0.0119	0.0170	-0.0016	-0.0010	0.0014	0.0106	0.0108	0.0082	0.0111	0.0119	0.0075	0.0031	0.0070	0.0102	0.0029	-0.0035
		"	0.0005	0.0026		$C_{m,a}$	0.1016	0.0755	0.0661	0.0683	0.0620	0.0932	0.1090	-0.1146	-0.2908	-0.3128	-0.3207	-0.5177	-0.5907	-0.6181	-0.6342	0.6132	0.6/9/	1,750	0.1043	0.0524	90000	-0.0630	-0.1626	-0.2464	-0.3319	-0.3772	-0.3935	-0.4274	-0.4542	-0.4874	-0.5170	-0.5703
		$C_{F,S}$	-0.0008	-0.0046		$C_{D,a}$	0.0186	0.0287	0.0345	0.0383	0.0439	0.0004	0.0073	0.0701	0.1312	0.1410	0.1428	0.2596	0.2938	0.3086	0.3176	0.3903	0.4208	0.4640	0.0147	0.0219	0.0326	0.0458	0.0750	0.1154	0.1611	0.1897	0.1492	0.1793	0.2026	0.2301	0.2623	0.3174
; = -10°]	teristics	<i>C</i> _m	-0.0051	-0.0127	cteristics	$C_{L,a}$	-0.0750	-0.0572	-0.0515	-0.0543	0.0208	0.0360	0.00	0.1258	0.1447	0.1570	0.1601	0.2560	0.2861	0.2952	0.2996	0.2007	0.2354	0.2490	-0.0790	-0.0412	-0.0104	0.0216	0.0782	0.1231	0.1620	0.1801	0.2155	0.2272	0.2352	0.2462	0.2501	0.2496
$[\delta_{A,D} = 25^{\circ}; \delta_{B} = 15^{\circ}; \delta_{E} = 10^{\circ}; \delta_{C,F} = -10^{\circ}]$	(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	0.0029	0.0070	(b) Aeropropulsive performance characteristics	C_I	-0.0006	9000.0	-0.0002	0.0005	0.0003	0.000	1000	0.0020	0.0017	0.0024	0.0032	0.0028	0.0022	0.0027	0.0033	0.0045	0.0046	0.0038	-0.0007	-0.0005	-0.0001	0.0003	0.0009	0.0012	0.0019	0.0022	0.0031	0.0021	0.0027	0.0032	0.0025	0.0019
$\delta_{\mathbf{B}} = 15^{\circ}; \delta$	M = 0) perfor	$C_{F,j}$	-0.0145	-0.0287	pulsive perfo	<i>C</i> ,	0.0028	0.0117	0.0235	0.0453	0.0016	0.0083	0.0453	0.0453	0.0120	0.0270	0.0504	0.0001	0.0119	0.0275	0.0511	0.0004	0.0139	0.0298	0.0014	0.0011	0.0003	-0.0025	-0.0027	-0.0017	-0.0026	-0.0029	-0.0022	-0.0016	-0.0023	-0.0032	0.0010	0.0010
$\delta_{A,D} = 25^{\circ}$	(a) Static (1	δ_y , deg	-3.13	-3.23	(b) Aeropro	$C_{\mathbf{y}}$	-0.0073	-0.0186	-0.0365	0.0770	0.0074	0.00/3	0.0330	0.000	-0.0189	-0.0472	-0.0929	-0.0001	-0.0238	-0.0544	-0.1010	0.0003	0.0271	0.00	-0.0016	-0.0010	0.0014	0.0106	0.0108	0.0082	0.0111	0.0119	0.0075	0.0031	0.0070	0.0102	0.0029	-0.0035
		δ_p , deg	11.27	10.18		<i>C</i> ,	0.1016	-0.0042	-0.0714	-0.1442	0.0620	0.1/41	0.2480	-0.2498	-0.3731	-0.4555	-0.5380	-0.5177	-0.6679	-0.7591	-0.8494	-0.6132	0.755	0.60	0.1043	0.0524	9000.0	-0.0630	-0.1626	-0.2464	-0.3319	-0.3772	-0.3935	-0.4274	-0.4542	-0.4874	-0.5170	-0.5703
		F_j/F_i	0.8223	0.8054		$C_{(D-F)}$	0.0186	-0.1979	-0.3743	-0.6139	0.0439	0.1503	0.5141	0.1137	-0.0612	-0.2103	-0.4115	0.2596	0.1588	0.0601	-0.0782	0.3903	0.3423	0.2360	0.0147	0.0219	0.0326	0.0458	0.0750	0.1154	0.1611	0.1897	0.1492	0.1793	0.2026	0.2301	0.2623	0.3174
		F_{μ}/F_{i}	0.8397	0.8239		C_L	-0.0750	-0.0122	0.0238	0.0623	0.0208	0.1399	0.2200	0.1258	0.2859	0.4069	0.5499	0.2560	0.4810	0.6510	0.8585	0.2007	0.4547	0.8883	-0.0790	-0.0412	-0.0104	0.0216	0.0782	0.1231	0.1620	0.1801	0.2155	0.2272	0.2352	0.2462	0.2501	0.2496
		NPR	2.00	4.00		NPR	1.00	2.00	3.00	4.25	3.5	7.01	3 5	0.00	2.01	3.00	4.25	0.99	2.01	3.01	4.25	0.98 80.0	2.01	4 25	1.00	1.00	1.00	1.00	0.99	0.99	0.9	0.0	0.00	0.60	0.98	0.98	0.98	0.98
						α, deg	0.01	-0.02	0.01	0.00	3.00	15.00	3.50	25.01	25.02	24.99	24.98	45.08	45.07	45.04	45.04	60.07	80.08	60.05	000	5.02	10.00	15.01	20.01	25.01	29.99	32.63	35.56	38.08	40.06	42.08	45.07	50.10
						M	0.301	0.303	0.304	0.303	0.303	0.302	0.302	0.302	0.299	0.299	0.299	0.300	0.300	0.299	0.298	0.303	0.302	0.301	0.301	0.302	0.301	0.301	0.300	0.299	0.300	0.299	0.300	0.300	0.300	0.300	0.300	0.299

 $\begin{array}{c} -0.0005\\ -0.0013\\ -0.0013\\ -0.0013\\ -0.0003\\ -0.00$

C ₁ a 0.0045 0.0045 0.0045 0.0005 0.0005 0.0001 0.0001 0.0000 0.0	0.0010
C, a constant of the constant	0.0008
C _{Y,a} 0.0023 0.0026 0.0026 0.0026 0.0019 0.0015 0.0027	0.0100
Cm.a 0.5927 0.6068 0.6688 0.0757 0.01138 0.02287 0.0231 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.4158 0.6331 0.7472 0.1074 0.0769 0.0776 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0776 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769 0.0769	-0.2629 -0.3434
C _{D.a} 0.3582 0.3887 0.4465 0.4465 0.0423 0.0550 0.0703 0.1029 0.11888 0.1953 0.2158 0.1953 0.2550 0.2158 0.1953 0.0284 0.04960 0.0457	0.0975
CLa 0.2276 0.1960 0.1755 0.1566 0.0086 0.00730 0.2023 0.20	0.1500
C ₁ 0.0045 0.0045 0.0044 0.00030 0.00031 0.00031 0.00031 0.00031 0.00041 0.00033 0.00044 0.00033 0.00044	0.0010
C _n -0.0003 -0.0003 -0.00458 0.0445 0.04487 0.04887 0.04887 0.04887 0.0554 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0558 0.0588	0.0008
$\begin{array}{c} C_{\chi} \\ 0.0023 \\ 0.0063 \\ 0.0063 \\ 0.00026 \\ 0.00027 \\ 0.00$	0.0100
0.5927 0.6688 0.6688 0.6688 0.1367 0.1367 0.1328 0.6714 0.6714 0.6721 0.6721 0.7221 0.6723 0.7221 0.6723 0.7221 0.6723 0.7221 0.6723 0.7221 0.6723 0.7221 0.6723 0.7221 0.7222 0.7222 0.7223	-0.2629 -0.3434
C_{D-F} 0.3582 0.3887 0.4465 0.04465 0.04465 0.04913 0.05922 0.059292 0.02946 0.02946 0.01249 0.01249 0.01249 0.0333 0.0346 0.0346 0.0346 0.00346 0.00348 0.00348 0.00348 0.00348 0.00348	0.0975
C_L 0.2276 0.1960 0.1755 0.1566 0.0542 0.0542 0.0542 0.0542 0.05433 0.05433 0.07322 0.07322 0.09033 0.8832 0.08033 0.8832 0.09063 0.09063 0.09063 0.09070 0.01491 0.02651 0.02651 0.02690 0.00633	0.1500
NPR 0.098 0.097 0.099 0.099 0.099 0.099	0.96
α, deg 55.05 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.06 60.00 60.0	25.03 30.01
0.299 0.302 0.302 0.302 0.302 0.303 0.299 0.290 0.299 0.299 0.299 0.299 0.290 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200	0.500

	$C_{l,a}$	-0.0012	-0.0009	-0.0009	0.0007	0.0007	0.000	0.0010
	$C_{n,a}$	0.0012	0.0011	0.0013	-0.0002	0.0032	0.0044	0.0016
	$C_{Y,a}$	-0.0016	-0.0013	-0.0029	0.0011	-0.0103	-0.0142	-0.0047
	C _{m,a}	0.0755	0.0261	-0.0274	-0.1249	-0.2210	-0.3168	-0.4085
	$C_{D,a}$	0.0269	0.0285	0.0338	0.0433	0.0700	0.1114	0.1586
	$C_{L,a}$	-0.0559	-0.0224	0.0081	0.0651	0.1234	0.1794	0.2262
ncinded	C_{I}	-0.0003	0.000	-0.0001	0.0016	0.0016	0.0017	0.0019
Table 22. Concluded	ڻ'	0.0176	0.0175	0.0176	0.0163	0.0197	0.0211	0.0183
	C_{Y}	-0.0307	-0.0305	-0.0321	-0.0284	-0.0397	-0.0440	-0.0345
	C_{m}	-0.0010	-0.0507	-0.1040	-0.2023	-0.2981	-0.3949	-0.4867
	$C_{(D-F)}$	-0.2079	-0.2028	-0.1903	-0.1754	-0.1377	-0.0880	-0.0278
	C_L	-0.0140	0.0401	0.0904	0.1678	0.2440	0.3196	0.3832
	NPR	4.25	4.25	4.25	4.25	4.27	4.25	4.26
	α, deg	-0.05	4.98	10.01	15.00	20.00	24.98	29.97
	W	0.505	0.503	0.504	0.501	0.504	0.499	0.500

Table 23. Static and Aeropropulsive Performance Characteristics at Afterburning Power

 $\left[\delta_{A,D} = 25^{\circ}; \, \delta_{B,E} = 15^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

ţ	$C_{l,a}$	-0.0003	-0.0004	-0.0003	0.000	0.0017	0.0017	0.0013	0.0022	0.0022	0.0025	0.0025	0.0021	0.0032	0.0021	0.0015	90000	0.0048	0.0039	0.0026	0.0019	0.0031	0.0029	-0.0003	-0.0001	0.0001	0.0016	0.0017	0.0030	0.0029	0.0024	0.0022	0.0033	0.0030
,	$C_{n,a}$	0.0026	0.0036	0.0007	0.0013	-0.0013	-0.0009	0.0014	9000.0	9000.0	0.0064	0.0071	0.0000	-0.0003	0.0026	0.0043	0.0047	0.0004	0.0043	0.0058	0.0085	-0.0013	-0.0010	0.0015	0.0011	0.0009	-0.0048	-0.0005	-0.0016	-0.0022	-0.0024	-0.0016	-0.0035	-0.0021
C_l 0.0000 0.0001 0.0002	$C_{Y,a}$	-0.0084	-0.0103	0.0011	0.0033	0.0046	0.0037	-0.0030	-0.0018	-0.0012	-0.0191	-0.0219	-0.0275	0.0009	-0.0110	-0.0167	-0.0196	0.0010	-0.0138	-0.0187	-0.0279	0.0053	0.0043	-0.0042	-0.0027	-0.0018	0.0166	0.0023	0.0059	0.0079	0.0072	0.0049	0.0122	0.0071
C _n -0.0001 0.0001	C _{m,a}	0.0980	0.0665	0.0569	0.0340	-0.1037	-0.1237	-0.1361	-0.2671	-0.2687	-0.3087	-0.3351	-0.3513	-0.5178	-0.5958	-0.6261	-0.6488	-0.6130	-0.6786	-0.7177	-0.7572	-0.3791	-0.3568	0.0987	0.0448	-0.0091	-0.0823	-0.1806	-0.3848	-0.3923	-0.4289	-0.4569	-0.4888	-0.5160
C _{F,S} 0.0005 0.0002 -0.0005	$C_{D,a}$	0.0187	0.0291	0.0335	0.0379	0.0605	0.0696	0.0757	0.1208	0.1226	0.1390	0.1500	0.1572	0.2648	0.2954	0.3110	0.3223	0.3915	0.4196	0.4412	0.4645	0.1848	0.1710	0.0164	0.0227	0.0339	0.0486	0.0805	0.1893	0.1469	0.1796	0.2036	0.2306	0.2607
C _m -0.0045 -0.0079 -0.0118 eristics	$C_{L,a}$	6690.0-	-0.0450	-0.0384	0.0362	0.0462	0.0601	0.0683	0.1406	0.1416	0.1633	0.1803	0.1899	0.2522	0.2927	0.3045	0.3146	0.1996	0.2383	0.2532	0.2694	0.1914	0.1815	-0.0691	-0.0311	0.0011	0.0380	0.0942	0.1937	0.2149	0.2270	0.2357	0.2465	0.2486
δ_y , deg $C_{F,j}$ $C_{F,N}$ C_m 1.66 -0.0158 0.0025 -0.006 0.38 -0.0290 0.0041 -0.007 -0.62 -0.0424 0.0061 -0.017 (b) Aeropropulsive performance characteristics	ت	-0.0003	-0.0003	0.0006	0.0018	0.0018	0.0025	0.0037	0.0022	0.0022	0.0026	0.0034	0.0044	0.0032	0.0030	0.0033	0.0041	0.0048	0.0047	0.0044	0.0053	0.0031	0.0029	-0.0003	-0.0001	0.0001	0.0016	0.0017	0.0030	0.0029	0.0024	0.0022	0.0033	0.0030
$C_{F,j}$ -0.0158 -0.0290 -0.0424 alsive perform	ڻ	0.0026	0.0024	0.0025	-0.0045	-0.0025	0.0009	0.0111	9000.0	9000.0	0.0051	0.0000	0.0189	-0.0003	0.0148	0.0339	0.0594	0.0004	0.0163	0.0348	0.0633	-0.0013	-0.0010	0.0015	0.0011	0.0009	-0.0048	-0.0005	-0.0016	-0.0022	-0.0024	-0.0016	-0.0035	-0.0021
δ _y , deg 1.66 0.38 -0.62 (b) Aeropropi	ځ	-0.0084	-0.0033	0.0019	0.0143	0.0116	8900.0	-0.0125	-0.0018	-0.0012	-0.0119	-0.0187	-0.0371	0.0009	-0.0283	-0.0655	-0.1162	0.0010	-0.0308	-0.0665	-0.1246	0.0053	0.0043	-0.0042	-0.0027	-0.0018	9910.0	0.0023	0.0059	0.0079	0.0072	0.0049	0.0122	0.0071
δ _p , deg 8.90 7.95 8.19	ر گ	0.0980	-0.0059	0.0676	-0.0805	-0.1723	-0.2477	-0.3365	-0.2671	-0.2687	-0.3783	-0.4590	-0.5540	-0.5178	-0.6642	-0.7544	-0.8470	-0.6130	-0.7458	-0.8434	-0.9555	-0.3791	-0.3568	0.0987	0.0448	0.0091	-0.0823	-0.1806	-0.3848	-0.3923	-0.4289	-0.4569	-0.4888	-0.5160
F _J F _i 0.8991 0.8857	$C_{(D-F)}$	0.0187	-0.2279	-0.4227	0.0481	-0.1639	-0.3525	-0.5890	0.1208	0.1226	-0.0677	-0.2340	-0.4544	0.2648	0.1602	0.0598	-0.0687	0.3915	0.3387	0.2910	0.2255	0.1848	0.1710	0.0164	0.0227	0.0339	0.0486	0.0805	0.1893	0.1469	0.1796	0.2036	0.2306	0.2607
F_{r}/F_{i} 0.9104 0.8988 0.8948	C_L	-0.0699	-0.0045	0.0263	0.0362	0.1462	0.2398	0.3545	0.1406	0.1416	0.3027	0.4302	0.5916	0.2522	0.4784	0.6497	0.8521	0.1996	0.4489	0.6437	0.8899	0.1914	0.1815	-0.0691	-0.0311	0.0011	0.0380	0.0942	0.1937	0.2149	0.2270	0.2357	0.2465	0.2486
NPR 2.00 2.99 3.99	NFK	1.00	2.03	3.00 7.	2.0	1.97	2.97	4.21	0.99	0.99	1.98	2.98	4.22	0.98	2.00	3.00	4.25	0.98	2.00	3.00	4.25	0.99	0.99	99:1	1.00	1.00	1:0	0.99	0.99	0.99	0.99	0.98	0.98	0.98
1 7 8	a, deg	0.11	0.12	0.11	15.13	15.12	15.10	15.07	25.10	25.12	25.10	25.09	25.08	45.01	44.98	44.99	44.98	60.02	90.09	59.98	59.95	31.33	30.13	0.00	5.10	10.12	15.11	20.11	31.69	35.24	38.01	40.01	42.00	45.01
2	Ø	0.301	0.301	0.302	0.301	0.301	0.301	0.301	0.301	0.299	0.301	0.301	0.299	0.300	0.298	0.297	0.298	0.298	0.301	0.300	0.299	0.301	0.301	0.301	0.302	0.301	0.301	0.298	0.300	0.299	0.299	0.299		0.299 65

Table 23. Continued

0.0020 0.0044 0.0044 0.0044 0.0061 0.0010 0.0010 0.0010 0.0010 0.0010 0.0011 0.0012
C _{n,a} 0.0010 0.00004 0.00013 0.00013 0.00013 0.00014 0.00017 0.00017 0.00017 0.00017 0.00019 0.00019 0.00019
$\begin{array}{c} C_{YA} \\ 0.0023 \\ 0.0033 \\ 0.0071 \\ 0.0022 \\ 0.002$
0.5700 0.5913 0.6703 0.0599 0.0016 0.0599 0.0016 0.0545 0.1389 0.0448 0.1448 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.1744 0.0763
$C_{D,a}$ 0.3164 0.3562 0.3907 0.4470 0.4493 0.0371 0.0457 0.0591 0.0760 0.1084 0.1546 0.2251 0.0278 0.04913 0.04913 0.04913 0.04913 0.04913 0.04913 0.04913 0.04913 0.04913 0.04913 0.0192 0.0251 0.0258 0.0356 0.0486 0.0588 0.0359 0.0486 0.0588 0.0359 0.0486 0.0588 0.0359 0.0486 0.0502 0.1119 0.1259 0.0190 0.0233
C_{La} 0.2492 0.2271 0.1967 0.1752 0.1752 0.1752 0.1752 0.0034 0.0260 0.0697 0.1316 0.2263 0.2263 0.2263 0.2263 0.02935 0.2263 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02935 0.02938 0.03931
C ₁ 0.0020 0.0044 0.0044 0.0044 0.0044 0.0011 0.0014 0.0044 0.0017
0.0010 0.0004 0.0004 0.00034 0.0137 0.0139 0.0103 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.01133 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033 0.00033
C_{Y} C_{Y} 0.0025 0.0039 0.0033 0.0071 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0140 0.0110 0.0110 0.0110 0.000
C _m 0.5700 0.5913 0.6113 0.6705 0.1044 0.1044 0.1055 0.2905 0.2905 0.2906 0.1044 0.1044 0.1055
$C_{(D-F)}$ 0.3164 0.3562 0.3907 0.4470 0.4893 0.6829 0.6829 0.6829 0.6575 0.6575 0.6575 0.0575 0.0576 0.0287 0.0287 0.0388 0.0192 0.0389 0.0388 0.0192 0.0389 0.0388 0.0192 0.0387 0.0258 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0389 0.0399 0.0399 0.0399 0.0399 0.0399
C_L 0.2492 0.2271 0.1967 0.1752 0.1967 0.1752 0.1630 0.2529 0.3632 0.6926 0.7194 0.7092 0.8882 0.7194 0.7068 0.0048 0.0048 0.0048 0.00559 0.1057 0.1139 0.1150 0.1150 0.1150
MPR
α, deg 50.00 55.01 66.00 65.02 68.31 0.09 0.09 65.02 68.31 0.09 10.09 10.09 10.09 10.09 10.09 10.09 10.09 0.008 0
M 0.298 0.302 0.297 0.299 0.300 0.299 0.290 0.299 0.290 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.200 0.20

	$C_{l,a}$	-0.0005	-0.0003	-0.0002	0.0014	0.0014	0.0015	0.0017
	$C_{n,a}$	0.0014	0.0014	0.0017	0.0014	0.0040	0.0049	0.0029
	$C_{Y,a}$	-0.0031	-0.0033	-0.0046	-0.0039	-0.0121	-0.0153	-0.0092
	$C_{m,a}$	0.0690	0.0178	-0.0374	-0.1456	-0.2464	-0.3475	-0.4404
	$C_{D,a}$	0.0268	0.0295	0.0356	0.0475	0.0805	0.1232	0.1721
	$C_{L,a}$	-0.0483	-0.0140	0.0164	0.0814	0.1427	0.2019	0.2477
ncluded	C_I	0.0003	9000.0	0.0007	0.0023	0.0023	0.0024	0.0026
Table 23. Concluded	<i>C</i> "	0.0051	0.0051	0.0053	0.0050	0.0077	0.0085	0.0064
	C_{Y}	-0.0068	-0.0069	-0.0082	-0.0076	-0.0158	-0.0189	-0.0129
	C_m	-0.0053	-0.0554	-0.1111	-0.2188	-0.3209	-0.4211	-0.5141
	$C_{(D-F)}$	-0.2386	-0.2278	-0.2169	-0.1954	-0.1562	-0.0989	-0.0367
	C_L	-0.0095	0.0470	0.1000	0.1860	0.2701	0.3477	0.4124
	NPR	4.29	4.27	4.27	4.27	4.25	4.26	4.26
	α, deg	0.09	5.11	10.08	15.07	20.08	25.06	30.04
	M	0.500	0.502	0.500	0.502	0.496	0.500	0.500

Table 24. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = -10^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

		$C_{l,a}$	-0.0002 -0.0004 -0.0007	0.0010	0.0011	0.0012	0.0003	0.0003	0.0020	0.0019	0.0017	0.0024	0.0030	0.0024	0.0024	0.004	0.0031	0.0037	0.0037	0000	-0.0001	0.0011	0.0013	0.0019	0.0025	0.0024
		$C_{n,a}$	0.0033 0.0037 0.0039	0.0043	-0.0039	-0.0034 -0.0031	0.0010	0.0003	0.0021	0.0022	0.0030	0.0014	0.0010	0.0002	0.0009	90009	0.0003	0.0018	0.0027	0.0027	0.0017	-0.0047	-0.0010	0.0004	0.00	-0.0024
(a) Static $(M = 0)$ performance characteristics	C_1 0.0000 0.0000 0.0000	$C_{Y,a}$	-0.0128 -0.0140 -0.0139	-0.0147	0.0104	0.0088	0.0017	-0.0002 -0.00 5 2	-0.0087	-0.0087	-0.0114	-0.0058	0.0026	-0.0018	-0.0040	0.0045	-0.0010	-0.0051	0.0084	0.0085	-0.0070	0.0136	0.0013	0.0028	0.0030	0.0075
	C _n -0.0001 -0.0002 -0.0003	$C_{m,a}$	0.1010 0.0906 0.0913	0.0913	-0.0795	-0.0803	-0.0733	-0.0/31	-0.2713	-0.2715	-0.2692	-0.5483	0.5243	-0.5482	-0.5484	-0.6185	-0.6266	-0.6326	-0.6339	0.0469	-0.0062	-0.0817	-0.1773	0.2693	0.3851	-0.3940
	$C_{F,S}$ 0.0002 0.0003 0.0006 0.0008	$C_{D,a}$	0.0184 0.0322 0.0337	0.0414	0.0474	0.0588	0.0654	0.0/23	0.1301	0.1318	0.13/3	0.2735	0.2655	0.2752	0.2735	0.3930	0.3945	0.3962	0.3965	0.0213	0.0321	0.0479	0.0781	0.1223	0.1868	0.1456
	C _m 0.0000 -0.0001 -0.0001 -0.0001	$C_{L,a}$	-0.0702 -0.0604 -0.0607	-0.0594	0.0366	0.0341	0.0256	0.022/ 0.1428	0.1395	0.1379	0.1305	0.2541	0.2564	0.2602	0.2571	0.2013	0.2024	0.2045	0.2017	-0.0320	-0.0003	0.0400	0.0937	0.1435	0.1958	0.2178
	δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} C_{m} 1.04 -0.0106 0.0001 0.000 0.79 -0.0199 0.0002 -0.000 1.08 -0.0306 0.0003 -0.000 0.115 -0.0384 0.0004 -0.000	C_I	-0.0002 -0.000 5 -0.0009	0.0010	0.0011	0.0000	0.0004	0.0003	0.0019	0.0017	0.0019	0.0026	0.0030	0.0021	0.0024	0.0044	0.0030	0.0038	0.0039	1000 1000	-0.0001	0.0011	0.0013	0.0019	0.0025	0.0024
	C _{Fj} -0.0106 -0.0199 -0.0306 -0.0384 pulsive perfor	"	0.0033 0.0028 0.0024	0.0012	-0.0039	0.0047	0.0040	0.0010	0.0011	0.0006	0.0003	-0.0026	0.0010	-0.0012	-0.0022	-0.0008	0.0010	-0.0012	0.0013	0.0027	0.0017	0.0047	0.0010	0.0004	0.0010	-0.0024
	δ _y , deg 1.04 0.79 1.08 1.15	C_Y	-0.0128 -0.0110 -0.0095	-0.0056	0.0104	0.0132	0.0108	0.0120	-0.0057	-0.0043	0.0002	0.0065	0.0026	0.0021	0.0051	0.0045	0.0034	0.0041	0.0038	-0.0085	-0.0070	0.0136	0.0013	0.0028	0.0030	0.0075
	δ _p , deg 0.42 0.62 0.58 0.54	C_{m}	0.1010 0.0901 0.0898	0.0891	-0.0795	-0.0786	-0.0755	-0.0/50	-0.2717	0.2731	-0.2711	-0.5502	-0.5243	-0.5497	-0.5506	-0.6185	-0.6282	-0.6348	-0.6358	0.0469	-0.0062	-0.0817	-0.1773	0.2693	-0.3851	-0.3940
	F/F _i 0.9895 0.9822 0.9741 0.9681	$C_{(D-F)}$	0.0184 -0.1361 -0.2835	-0.4430	0.0474	-0.1028	-0.3994	0.1209	-0.0200	-0.1533	-0.4082	-0.1568	0.2655	0.0517	-0.0689	0.3930	0.2388	0.1569	0.0958	0.0213	0.0321	0.0479	0.0781	0.1223	0.1868	0.1456
	F,/F _i 0.9897 0.9823 0.9743	C_L	-0.0702 -0.0592 -0.0573	-0.0548 -0.0515	0.0366	0.0780	0.1552	0.1428	0.2108	0.2746	0.3922	0.6920	0.2564	0.4885	0.6063	0.2013	0.4793	0.6285	0.7339	-0.0320	-0.0003	0.0400	0.0937	0.1435	0.1958	0.2178
	NPR 2.00 3.00 4.16 5.00	NPR	1.00 2.01 3.01	4.16 5.00	8.9	3.00	4.13	96.0	1.99	3.00	4.99	5.00	0.98 - -	3.00	4.15	0.97	2.99	4.16	2.00	8. 8.	1.00	00.0	6 6 6 6 6 6 7	8 8 8 8	0.60	0.99
		α, deg	0.01 -0.02 -0.01	9 7 7 7 7 7 7	15.01	14.99	15.01	14.98 25.01	24.98	24.99	24.98	44.97	45.02	4 8 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9 9	44.99	59.99	60.09	59.98	90.00	5.00	66.6	15.01	20:02 32:00 33:00 33:00 33:00 33:00 33:00 33:00 33:00 33:00 33:00 34:00	25.00 20.05	31.66	35.26
		M	0.302 0.301 0.300	0.301	0.300	0.300	0.300	0.300	0.300	0.300	0.300	0.299	0.298	0.299	0.299	0.299	0.299	0.300	0.300	0.300	0.301	0.299	0.300	0.299	0.301	0.299

$C_{l,a}$	0.0023	0.0020	0.0028	0.0024	0.0026	0.0043	0.0041	0.0041	0.0053	-0.0007	-0.0004	-0.0006	0.0003	0.0012	0.0016	0.0023	0.0026	0.0028	0.0032	0.0024	0.0027	0.0024	0.0030	0.0035	0.0040	0.0044	0.0029	-0.0003	-0.0003	-0.0003	-0.0005	-0.0005	0.0011	0.0009	0.0010	0.0010	0.0010	0.0012	0.0011	0.0012	0.0011	0.0010	-0.0004	-0.0001	-0.0004
$C_{n,a}$	-0.0037	-0.0027	-0.0040	-0.0021	-0.0010	-0.0013	0.0010	-0.0024	-0.0043	0.0035	0.0030	0.0017	-0.0029	-0.0001	0.0017	0.0010	0.0000	-0.0003	-0.0018	0.0005	-0.0003	0.0011	0.0030	0.0015	0.0015	0.0020	-0.0039	0.0016	0.0022	0.0021	0.0024	0.0023	-0.0024	-0.0023	-0.0022	-0.0017	-0.0015	-0.0001	0.0005	0.000	0.0015	0.0020	0.0017	0.0017	0.0008
$C_{Y,a}$	0.0111	0.0092	0.0133	0.0068	0.0042	0.0063	0.0057	9600.0	0.0155	-0.0118	9600.0-	-0.0062	0.0084	-0.0013	-0.0068	-0.0049	-0.0044	9000.0	0.0052	-0.0023	-0.0002	-0.0047	-0.0102	-0.0040	-0.0035	-0.0053	0.0098	-0.0048	-0.0067	-0.0063	-0.0073	-0.0072	0.0070	0.0063	0.0061	0.0047	0.0039	-0.0004	-0.0023	-0.0035	-0.0059	-0.0076	-0.0059	0900.0-	-0.0032
$C_{m,a}$	-0.4342	-0.4604	-0.4943	-0.5248	-0.5686	-0.5971	-0.6192	-0.6821	-0.7277	0.0918	0.0363	-0.0153	-0.0774	-0.1767	-0.2678	-0.3619	-0.3919	-0.4047	-0.4524	-0.4829	-0.5153	-0.5465	-0.5808	-0.6152	-0.6323	-0.6685	-0.6620	0.1080	0.1048	0.1013	0.0991	0.0975	-0.1038	-0.1064	-0.1067	-0.1068	-0.1068	-0.2921	-0.2947	-0.2958	-0.2969	-0.2968	0.1065	0.0507	-0.0039
$C_{D,a}$	0.1798	0.2026	0.2304	0.2630	0.3134	0.3587	0.3942	0.4518	0.4930	0.0394	0.0446	0.0552	0.0670	0.0969	0.1354	0.1855	0.1997	0.1575	0.1908	0.2144	0.2393	0.2711	0.3160	0.3619	0.3957	0.4385	0.4465	0.0187	0.0251	0.0273	0.0298	0.0310	0.0369	0.0419	0.0434	0.0452	0.0475	0.1073	0.1102	0.1116	0.1134	0.1145	0.0184	0.0194	0.0232
$C_{L,a}$	0.2317	0.2399	0.2516	0.2553	0.2500	0.2301	0.2012	0.1824	0.1621	-0.0602	-0.0230	0.0033	0.0299	0.0843	0.1315	0.1721	0.1870	0.2099	0.2293	0.2386	0.2500	0.2560	0.2490	0.2352	0.2049	0.1744	0.1407	-0.0770	-0.0747	-0.0717	-0.0698	-0.0686	0.0568	0.0582	0.0575	0.0565	0.0553	0.1704	0.1685	0.1676	0.1668	0.1654	-0.0763	-0.0360	-0.0037
C_I	0.0023	0.0020	0.0028	0.0024	0.0026	0.0043	0.0041	0.0041	0.0053	-0.0007	-0.0004	-0.0005	0.0004	0.0012	0.0017	0.0024	0.0027	0.0029	0.0033	0.0025	0.0028	0.0024	0.0030	0.0036	0.0040	0.0044	0.0029	-0.0003	-0.0003	-0.0004	-0.0005	-0.0004	0.0011	0.0008	0.0000	0.0010	0.0010	0.0012	0.0010	0.0011	0.0011	0.0011	-0.0004	-0.0001	-0.0004
C''	-0.0037	-0.0027	-0.0040	-0.0021	-0.0010	0.0013	-0.0010	-0.0024	-0.0043	0.0005	-0.0002	-0.0014	-0.0060	-0.0031	-0.0014	-0.0020	-0.0022	-0.0033	-0.0049	-0.0025	-0.0034	-0.0019	0.0000	-0.0017	-0.0016	-0.0011	-0.0071	0.0016	0.0018	0.0015	0.0012	0.0009	-0.0024	-0.0026	-0.0027	-0.0029	-0.0030	-0.0001	0.0002	0.0003	0.0004	90000	0.0017	0.0017	0.0008
C_{Y}	0.0111	0.0092	0.0133	0.0068	0.0042	0.0063	0.0057	0.0096	0.0155	-0.0028	-0.0005	0.0029	0.0176	0.0079	0.0023	0.0043	0.0046	0.0098	0.0143	8900.0	0.0000	0.0045	-0.0011	0.0052	0.0056	0.0040	0.0194	-0.0048	-0.0056	-0.0047	-0.0040	-0.0028	0.0070	0.0074	0.0077	0.0080	0.0083	-0.000 4	-0.0012	-0.0019	-0.0027	-0.0032	-0.0059	-0.0060	-0.0032
C,,	-0.4342	-0.4604	-0.4943	-0.5248	-0.5686	-0.5971	-0.6192	-0.6821	-0.7277	9680'0	0.0341	-0.0175	-0.0796	-0.1789	-0.2700	-0.3641	-0.3941	-0.4069	-0.4546	-0.4851	-0.5176	-0.5487	-0.5830	-0.6174	-0.6345	-0.6708	-0.6643	0.1080	0.1046	0.1008	0.0983	0.0968	-0.1038	-0.1065	-0.1073	-0.1076	-0.1075	-0.2921	-0.2948	-0.2964	-0.2977	-0.2975	0.1065	0.0507	-0.0039
$C_{(D-F)}$	0.1798	0.2026	0.2304	0.2630	0.3134	0.358/	0.3942	0.4518	0.4930	-0.4409	-0.4401	-0.4240	-0.4041	-0.3623	-0.2985	-0.2375	-0.2085	-0.2388	-0.1899	-0.1564	-0.1221	-0.0728	92000	0.0835	0.1580	0.2343	0.2634	0.0187	-0.0355	-0.0868	-0.1461	-0.1885	0.0369	-0.016/	-0.0667	-0.1229	-0.1652	0.1073	0.0545	0.0081	-0.0446	-0.0842	0.0184	0.0194	0.0232
C_L	0.2317	0.2399	0.2516	0.2553	0.2500	0.2301	0.2012	0.1824	0.1621	-0.0555	0.0246	0.0929	0.1613	0.2566	0.3390	0.4219	0.4434	0.4949	0.5329	0.5562	0.5818	0.6070	0.6243	0.6410	0.6263	0.6236	0.6158	-0.0770	-0.0743	-0.0705	-0.0681	-0.0665	0.0568	0.0/44	0.0882	0.1034	0.1144	0.1704	0.1950	0.2172	0.2423	0.2603	-0.0763	-0.0360	-0.0037
NPR	86.0	86.0	0.98	0.98	0.98	0.97	76.0	0.97	0.97	4.15	4.15	4.16	4.15	4.16	4.14	4.14	4.14	4.16	4.15	4.15	4.15	4.15	4.16	4.15	4.16	4.15	4.14	0.99	2.00	5.99	4.17	4.99	96.0	00.7	3.00	4.14	5.01	0.97	2.02	3.01	4.16	5.00	0.99	0.99	0.99
α, deg	38.03	39.99	42.00	44.99	50.03	55.03	00.01	64.98	68.35	-0.05	5.03	10.00	15.00	20.00	24.98	29.99	31.56	35.15	37.99	40.01	41.98	45.02	50.01	54.97	00:09	64.99	68.34	0.03	-0.01	0.00	-0.03	0.01	15.01	20.CI	14.99	15.00	14.98	24.99	24.99	25.00	24.96	24.98	0.00	4.99	10.03
M	0.298	0.298	0.298	0.299	0.298	0.302	667.0	0.302	0.300	0.301	0.300	0.300	0.299	0.299	0.301	0.298	0.300	0.300	0.299	0.299	0.298	0.298	0.300	0.298	0.301	0.298	0.292	0.501	0.500	0.499	0.499	0.499	0.499	0.499	0.499	0.499	0.499	0.500	0.499	0.500	0.500	0.500	0.499	0.500	0.500

	$C_{l,a}$	0.0011	0.0011	0.0016	-0.0006	-0.0003	-0.0005	0.0011	0.0012	0.0014	0.0018
	$C_{n,a}$	-0.0017	0.0000	-0.0026	0.0020	0.0019	0.0011	-0.0009	0.0016	0.0022	-0.0008
	$C_{Y,a}$	0.0041	-0.0033	0.0075	-0.0069	-0.0067	-0.0046	0.0015	-0.0059	-0.0083	0.0012
	C _{m.a}	-0.1035	-0.1989	-0.3762	0.0972	0.0413	-0.0081	-0.1041	-0.1993	-0.2962	-0.3877
	$C_{D,a}$	0.0360	0.0649	0.1521	0.0279	0.0296	0.0333	0.0427	0.0706	0.1126	0.1595
	$C_{L,a}$	0.0568	0.1700	0.2112	-0.0678	-0.0293	-0.0026	0.0529	0.1119	0.1682	0.2132
ncluded	C_{l}	0.0011	0.0011	0.0016	90000	-0.0003	-0.0005	0.0012	0.0012	0.0015	0.0019
Table 24. Concluded	"	-0.0017	0.000	-0.0026	0.0000	0.0008	0.0001	-0.0020	0.0004	0.0010	-0.0019
	C_{Y}	0.0041	0.0033	0.0075	-0.0036	-0.0035	-0.0013	0.0048	-0.0027	-0.0050	0.0045
	<i>C</i> .	-0.1035	-0.1989 -0.2910	-0.3762	0.0964	0.0405	-0.0089	-0.1049	-0.2001	-0.2969	-0.3885
	$C_{(D-F)}$	0.0360	0.0649	0.1521	-0.1452	-0.1431	-0.1378	-0.1259	-0.0923	-0.0450	0.0085
	C_L	0.0568	0.170	0.2112	-0.0661	-0.0124	0.0294	0.0999	0.1731	0.2436	0.3023
	NPR	86.0	0.98	96.0	4.13	4.16	4.16	4.14	4.14	4.16	4.16
	a, deg	15.00	20.00	30.01	-0.01	2.00	10.01	15.00	20.01	24.97	29.97
	W	0.500	0.501	0.499	0.501	0.502	0.502	0.499	0.500	0.500	0.499

Table 25. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 10^{\circ}; \, \delta_{B,E} = 10^{\circ}; \, \delta_{C,F} = 10^{\circ}\right]$

	$C_{l,a}$ C_{l	0.0021 0.0023 -0.0006 -0.0008
	C _{n,a} 0.0017 0.0023 0.0018 0.0017 0.00024 0.00024 0.00013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.0008 0.0008 0.0009 0.0014
C ₁ 0.0000 0.0000 0.0000 0.0000	$C_{Y,a}$ C_{Y	0.0017 0.0052 -0.0030 -0.0045
C_n -0.0001 -0.0002 -0.0002	C m.a 0.0999 0.1019 0.00999 0.1019 0.0953 0.0953 0.0978 0.00729 0.0678 0.0678 0.0678 0.0678 0.00859 0.0043 0.0959 0.0043 0.0678 0.0067	0.3552 -0.3817 0.1058 0.1104 0.1102
C _{F.S} 0.0002 0.0003 0.0006 0.0007	$C_{D,a}$ 0.0140 0.0215 0.0253 0.0253 0.0254 0.0251 0.0497 0.0497 0.0558 0.11280 0.1280 0.01280 0.01280 0.01280 0.01260 0.01280 0.01260	0.1751 0.1898 0.0175 0.0216 0.0224
C _m -0.0001 -0.0003 -0.0003 -0.0006	$C_{L,a}$ -0.0714 -0.0704 -0.0705 -0.0652 -0.0652 -0.0621 0.0236 0.0235 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.1352 0.0237 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779 0.0779	0.1699 0.1828 -0.0756 -0.0780
(a) Static ($M = 0$) performance characteristics δ_y , deg $C_{F,j}$ $C_{F,N}$ C_m 1.04 -0.0103 0.0001 $-0.0000.85$ -0.0197 0.0003 $-0.0001.09$ -0.0297 0.0004 $-0.0001.09$ -0.0370 0.0006 $-0.000(b) Aeropropulsive performance characteristics$	C_l	0.0022 0.0024 -0.0006 -0.0008
$M = 0$) perform $C_{F,j}$ -0.0103 -0.0197 -0.0297 -0.0370	C _n 0.0017 0.00014 0.00014 0.00013 0.00054 0.00054 0.00054 0.00069 0.00069 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.000000 0.00000 0.00000 0.00000 0.00000 0.00000 0.00000 0.000000 0.00	0.0033 0.0004 0.0009 0.0010 0.0010
 (a) Static (Λ δ_y, deg 1.04 0.85 1.09 1.09 1.09 	C_Y -0.0054 -0.0046 -0.0046 -0.0021 0.0022 0.0042 0.0174 0.0174 0.0185 -0.0003 -0.00015 0.00015 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005 0.0005	0.0108 0.0143 -0.0030 -0.0035
δ_p , deg 0.72 0.96 0.78 0.88	C_m 0.0999 0.1002 0.0995 0.0905 0.0905 0.0905 0.0905 0.00811 0.2683 0.00485 0.00485 0.00485 0.00800 0.00881 0.00800 0.00881 0.00800 0.00881 0.00800 0.00800 0.00800 0.00800 0.00800	-0.3606 -0.3869 0.1058 0.1098 0.1096
F/F_i 0.9812 0.9813 0.9669 0.9515	C(D-F) 0.0140 0.01415 0.01415 0.2879 0.4415 0.65560 0.0422 0.0148 0.0148 0.0126 0.0126 0.0126 0.0126 0.0139 0.0139 0.0139 0.0140	0.2334 0.2115 0.0175 0.0374 0.0902
F,F; 0.9814 0.9815 0.9672 0.9518	C_L -0.0714 -0.0687 -0.0687 -0.0532 -0.0532 -0.0532 -0.0734 -0.1526 -0.1441 -0.1726 -0.0329 -0.0329 -0.0027 -0.0349 -0.0027 -0.0349 -0.0027 -0.0349 -0.0027 -0.0349 -0.0027 -0.0349 -0.0027 -0.0349 -0.0349 -0.0349 -0.0349	0.4135 0.4366 -0.0756 -0.0772 -0.0768
NPR 1.99 2.99 4.14 4.99	NPR 1.00 1.99 2.99 2.99 4.12 2.00 1.00 1.00 1.00 1.00 1.00 1.00 1	4.17 4.14 0.99 2.00 3.02
	a, deg 0.01 0.02 0.01 0.02 0.02 15.02 15.00 14.97 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 15.03 16.03 17.03	30.01 31.53 0.02 0.01 -0.02
	0.302 0.302 0.303 0.300 0.301 0.300 0.300 0.300 0.299 0.299 0.299 0.299 0.299 0.299 0.299	0.300 0.299 0.502 0.500

0.0014 0.00014 CY.a 0.0056 0.0056 0.0062 0.0003 0.0003 0.0003 0.0003 0.0007 0.0005 Cm.a 0.1093 0.1083 0.1083 0.1083 0.1005 0.293 0.293 0.1038 0.1038 0.1038 0.1038 0.1077 0.0098 0.0098 C_{D.a}
10247
10247
10247
10335
10336
10337
10337
10338
103401
1062
1062
10632
10625
10625
10633
10633
10633
10633 C_{L,a}
0.0769
0.0769
0.0769
0.0566
0.0568
0.0518
0.06719
0.06719
0.06719
0.0678
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763
0.0763 C₁ 0.00099 0.0009 0.0000 C_n

0.0009

0.000909

0.00091

0.00091

0.00091

0.00091

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099

0.00099 Cy 0.0025 0.0062 0.0062 0.0062 0.0070 0.0071 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 0.0063 C_m
0.1049
0.1049
0.1049
0.1049
0.1040
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070
0.1070 $\begin{array}{c} C_{D-E} \\ -0.1856 \\ -0.1856 \\ -0.0033 \\ -0.0000 \\$ C_L 0.0737
0.0737
0.0737
0.0737
0.0736
0.0856
0.0856
0.0968
0.1637
0.1633
0.1639
0.0740
0.0740
0.01689
0.01689
0.01689
0.01689
0.01689
0.01689
0.01689 4 deg 6 deg M 15202 15301 15499 15499 15502 15501 15502 15501 15502 1550

Table 26. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 15^{\circ}; \, \delta_{B,E} = -10^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

			$C_{l,a}$	0.0000	0.0003	0000	-0.0009	-0.0011	0.0014	0.0014	0.0011	0.0006	0.0006	0.0024	0.0024	0.0024	0.0021	0.0021	0.0035	0.0028	0.0029	0.0029	0.0023	0.0046	0.0046	0.0037	0.0037	0.0033	-0.0001	0.0002	0.0002	0.0015	0.0017	0.0034
			$C_{n,a}$	0.0019	0.0018	0.0027	0.0029	0.0019	-0.0051	-0.0043	-0.0030	-0.0010	-0.0002	-0.0004	0.0018	0.0032	0.0047	0.0055	-0.0009	0.0007	0.0017	0.0024	0.0041	-0.0003	0.0003	0.0013	0.0024	0.0031	0.0019	0.0010	0.0004	-0.0056	-0.0014	-0.0022
	C _I 0.0000 0.0000 0.0000		$C_{Y,a}$	-0.0077	-0.0070	-0.0105	-0.0097	-0.0063	0.0157	0.0128	0.0091	0.0028	0.0007	0.0014	-0.0068	-0.0113	-0.0160	-0.0181	0.0023	-0.0041	-0.0074	-0.0099	-0.0160	0.0020	0.0004	-0.0042	-0.0084	-0.0110	-0.0065	-0.0032	-0.0017	0.0178	0.0042	0.0072
	<i>C_n</i> -0.0001 -0.0003 -0.0003		$C_{m,a}$	0.0997	0.0922	0.037	0.0734	0.0638	-0.0810	-0.0811	-0.0822	-0.0873	-0.0989	-0.2711	-0.2843	-0.2907	-0.3001	-0.3148	-0.5231	-0.5507	-0.5652	-0.5817	-0.6003	-0.6207	-0.6348	0.6434	-0.6632	-0.6837	0.0986	0.0450	-0.0088	-0.0834	-0.1808	-0.3617
	$C_{F,S} \\ 0.0002 \\ 0.0005 \\ 0.0009 \\ 0.0009$		$C_{D,a}$	0.0152	0.0279	0.0307	0.0317	0.0348	0.0456	0.0552	0.0587	0.0631	0.0690	0.1214	0.1328	0.1357	0.1423	0.1491	0.2682	0.2809	0.2868	0.2941	0.3035	0.3976	0.4027	0.4070	0.4192	0.4320	0.0133	0.0209	0.0319	0.0472	0.0784	0.1705
teristics	<i>C_m</i> -0.0008 -0.0015 -0.0027	cteristics	$C_{L,a}$	-0.0704	-0.0633	-0.0491	-0.0466	-0.0378	0.0374	0.0318	0.0312	0.0351	0.0430	0.1436	0.1472	0.1503	0.1555	0.1650	0.2517	0.2615	0.2684	0.2753	0.2846	0.1997	0.2053	0.2082	0.2150	0.2236	-0.0690	-0.0310	0.0005	0.0396	0.0957	0.1861
(a) Static ($M = 0$) performance characteristics	C _{F.N} 0.0005 0.0009 0.0014 0.0021	(b) Aeropropulsive performance characteristics	C_{I}	0.0000	0.0003	-0.0005	-0.0005	-0.0003	0.0014	0.0013	0.0011	0.0010	0.0014	0.0024	0.0024	0.0024	0.0025	0.0030	0.0035	0.0027	0.0029	0.0033	0.0030	0.0046	0.0044	0.0037	0.0041	0.0041	-0.0001	0.0002	0.0002	0.0015	0.0017	0.0034
4 = 0) perfor	$C_{F,j}$ -0.0104 -0.0194 -0.0368	oulsive perfor	<i>C</i> "	0.0019	0.0010	-0.0005	-0.0010	-0.0026	-0.0051	-0.0051	-0.0053	-0.0047	-0.0047	-0.0004	0.0010	0.0010	0.0008	0.0009	0.0009	-0.0001	-0.0006	-0.0014	4000.0	-0.0003	-0.0003	-0.0010	-0.0014	-0.0015	0.0019	0.0010	0.0004	-0.0056	-0.0014	-0.0022
(a) Static (A	δ _y , deg 0.94 1.37 1.50 1.41	(b) Aeroprop	C_{Y}	-0.0077	0.0044	0.0010	0.0025	0.0079	0.0157	0.0154	0.0163	0.0149	0.0149	0.0014	-0.0042	-0.0041	-0.0038	-0.0038	0.0023	-0.0014	-0.0001	0.0022	-0.001/	0.0020	0.0023	0.0031	0.0039	0.0034	-0.0065	-0.0032	-0.0017	0.0178	0.0042	0.0072
	δ _p , deg 2.60 2.59 2.61 3.32		C_{m}	0.0997	0.0801	0.0375	0.0315	-0.0066	-0.0810	-0.0929	-0.1063	-0.1290	-0.1691	-0.2711	-0.2963	-0.3148	-0.3421	-0.3854	-0.5231	-0.5629	-0.5894	-0.6236	-0.6/12	-0.6207	0.470	-0.6678	-0.7055	-0.7553	0.0986	0.0450	-0.0088	-0.0834	-0.1808	-0.3617
	F _J F _i 0.9604 0.9525 0.9418 0.9256		$C_{(D-F)}$	0.0152	-0.1362	-0.4126	-0.4321	-0.5404	0.0456	-0.0972	-0.2305	-0.3775	-0.4792	0.1214	-0.0109	-0.1339	-0.2701	-0.3607	0.2682	0.1694	0.0813	0.0194	0.0820	0.3976	0.32/4	0.2653	0.2034	0.1692	0.0133	0.0209	0.0319	0.0472	0.0784	0.1705
	F _i /F _i 0.9616 0.9538 0.9431 0.9274		C_L	-0.0704	-0.0538 -0.0431	-0.0291	-0.0254	-0.0045	0.0374	0.0801	0.1230	0.1748	0.2241	0.1436	0.2224	0.2912	0.3711	0.4398	0.2517	0.3837	0.4932	0.6183	0.7175	0.1997	0.3507	0.4815	0.6307	0.7462	0.0690	-0.0310	0.0005	0.0396	0.0957	0.1861
	NPR 2.01 3.01 4.16 5.01		NPR	8.5	3.00	4.00	4.15	2.00	0.9	1.99	3.00	4.14	6.99 90.50	0.00	2.00	2.99	4.15	4.99	0.98 0.08	2.00	3.01	4.16	2.01	76.0	2.00 2.00	3.01	4.16	5.01	1.00	90.	1.00	1.00	0.99	0.99
			α, deg	0.01	0.00	-0.03	0.00	0.01	15.00	14.98	15.02	14.98	14.97	24.99	24.99	25.01	24.99	25.02	45.00	45.02	92.00	14.97	£ 5	20.00	90.01	90.09	59.96	59.97	0.01	5.01	6.6	14.98	20.00	30.02
			W	0.302	0.301	0.302	0.302	0.302	0.302	0.302	0.302	0.302	0.302	0.299	0.301	0.301	0.301	0.301	0.298	0.299	0.302	0.302	0.302	0.297	0.300	0.301	0.301	0.301	0.300	0.301	0.301	0.300	0.301	0.301

$C_{l,a}$	0.0012	-00003	-0.000	-0.0004	0.0012	0.0012	0.0015	0.0016	90000	00003	00005	0.0012	0.0013	0.0014	0.0018
$C_{n,a}$	0.0018	0.0014	0.0013	0.0005	-0.0020	-0.0002	0.0002	-0.0025	0.0022	0.0018	0.0006	-0.0005	0.0015	0.0021	0.0000
$C_{Y,a}$	-0.0068	-0.0048	400.0	-0.0019	0.0054	0.0002	-0.000	0.0073	-0.0073	-0.0062	-0.0024	0.0005	-0.0054	-0.0081	-0.0015
$C_{m,a}$	-0.3246	0.1042	0.0479	-0.0057	-0.1078	-0.2013	-0.2935	-0.3793	0.0927	0.0349	-0.0147	-0.1192	-0.2191	-0.3177	-0.4087
$C_{D,a}$	0.1202	0.0182	0.0193	0.0242	0.0355	0.0646	0.1067	0.1527	0.0265	0.0278	0.0322	0.0435	0.0753	0.1182	0.1653
$C_{L,a}$	0.1853	-0.0749	-0.0344	-0.0027	0.0588	0.1172	0.1711	0.2133	-0.0655	-0.0252	90000	0.0632	0.1244	0.1812	0.2263
C_{I}	0.0015	-0.0003	-0.0001	-0.0004	0.0012	0.0012	0.0015	0.0016	-0.0004	-0.0002	-0.0003	0.0014	0.0014	0.0016	0.0019
"	0.0002	0.0014	0.0013	0.0005	-0.0020	-0.0002	0.0002	-0.0025	0.0008	0.0004	-0.0008	-0.0019	0.0001	0.0007	-0.0014
C_Y	-0.0017	-0.0048	-0.0044	-0.0019	0.0054	0.0002	-0.0009	0.0073	-0.0029	-0.0017	0.0020	0.0050	-0.0009	-0.0037	0.0029
C _m	-0.3501	0.1042	0.0479	-0.0057	-0.1078	-0.2013	-0.2935	-0.3793	0.0771	0.0194	-0.0301	-0.1348	-0.2346	-0.3333	-0.4241
$C_{(D-F)}$	-0.0641	0.0182	0.0193	0.0242	0.0355	0.0646	0.1067	0.1527	-0.1429	-0.1403	-0.1332	-0.1184	-0.0824	-0.0335	0.0231
\mathcal{C}_L	0.2845	-0.0749	-0.0344	-0.0027	0.0588	0.1172	0.1711	0.2133	-0.0576	-0.0027	0.0377	0.1147	0.1901	0.2606	0.3172
NPR	5.00	0.99	0.99	0.99	0.99	0.98	0.97	96.0	4.19	4.19	4.18	4.20	4.17	4.17	4.18
α, deg	24.96	-0.01	5.01	10.00	14.99	19.99	25.00	29.99	0.01	4.98	10.02	14.99	19.98	25.00	29.97
W	0.502	0.500	0.502	0.497	0.502	0.500	0.500	0.502	0.503	0.502	0.502	0.503	0.499	0.499	0.503
	$lpha_i$ deg NPR C_L $C_{(D-F)}$ C_m C_Y C_n C_l $C_{L,a}$ $C_{D,a}$ $C_{m,a}$ $C_{Y,a}$ $C_{n,a}$	α , deg NPR C_L $C_{(D-F)}$ C_m C_Y C_n C_l $C_{L,a}$ $C_{D,a}$ $C_{m,a}$ $C_{Y,a}$ $C_{n,a}$ $C_{n,a}$ $C_{2,a}$	α , deg NPR C_L $C_{(D-F)}$ C_m C_f C_I $C_{L,a}$ $C_{D,a}$ $C_{m,a}$ $C_{r,a}$	α , degNPR C_L $C_{(D-F)}$ C_m C_Y C_n C_1 $C_{L,a}$ $C_{D,a}$ $C_{m,a}$ $C_{Y,a}$ $C_{n,a}$ 24.965.000.2845 -0.0641 -0.3501 -0.0017 0.00020.00150.18530.1202 -0.3246 -0.0068 0.00181 -0.01 0.99 -0.0749 0.01820.1042 -0.0048 0.0014 -0.0001 -0.0049 0.0013 -0.0001 -0.0344 0.01930.0479 -0.0044 0.0013	α , degNPR C_L $C_{(D-F)}$ C_m C_F C_F C_La C_{La} $C_{Da}a$ C_{ma} C_{ra} C_{ra} 24.965.000.2845-0.0641-0.3501-0.00170.00020.00150.18530.1202-0.3246-0.00680.00189-0.010.99-0.07490.01820.1042-0.00480.0014-0.0001-0.00490.01930.0479-0.00480.001310.000.99-0.00270.0242-0.0057-0.00190.0005-0.0004-0.00070.0027-0.00190.00190.0005	α , degNPR C_L $C_{(D-F)}$ C_m C_F C_F C_L C_L C_{La} C_{Da} C_{ma} <	α , degNPR C_L $C_{(D-F)}$ C_m C_Y C_n C_1 C_{La} C_{Da} C_{ma} C_{ya} C_{ya	α , degNPR C_L $C_{(D-F)}$ C_m C_Y C_n C_1 C_{La} C_{Da} C_{ma} C_{Ya} C_{ya} C_{ya} 24.965.000.2845 -0.0641 -0.3501 -0.0017 0.00020.00150.18530.1202 -0.3246 -0.0068 0.00180.010.99 -0.0749 0.01820.1042 -0.0048 0.0014 -0.0001 -0.0049 0.01930.0479 -0.0048 0.001310.000.99 -0.0344 0.01930.0479 -0.0049 0.0005 -0.0004 0.0004 -0.0027 0.0242 -0.0044 0.001310.000.990.00270.0242 -0.0019 0.0005 -0.0004 0.000120.0242 -0.0057 -0.0019 0.0005 -0.0027 0.0242 -0.0019 0.000514.990.990.05880.0355 -0.1078 0.00020.00120.01720.0646 -0.2013 0.00020.00120.11720.0646 -0.2013 0.000225.000.970.17110.1067 -0.2935 -0.0009 0.000150.017110.1067 -0.2935 -0.0009 0.000150.17110.1067 -0.2935 -0.0009 0.000150.17110.1067 -0.2935 -0.0009 0.000150.001710.10110.1067 -0.2935 -0.0009 0.000150.17110.1067 -0.2935 -0.0009 0.000150.17110.1067 -0.2935 -0.0009 0.000150.1711 <td< td=""><td>α, degNPR$C_L$$C_{(D-F)}$$C_m$$C_F$$C_L$$C_La$$C_{La}$$C_{Da}$$C_{ma}$$C_{Fa}$$C_{m$</td><td>$\alpha$, degNPR$C_L$$C_{(D-F)}$$C_m$$C_Y$$C_L$$C_La$$C_{La}$$C_{Da}a$$C_{ma}$$C_{ya}$$C_{ma}$$C_{$</td><td>$\alpha$, degNPR$C_L$$C_{(D-F)}$$C_m$$C_Y$$C_L$$C_La$$C_{Da}a$</td><td>$\alpha$, deg NPR C_L $C_{(D-F)}$ C_m C_L C_{La} C_{Da} C_{D</td><td>α, deg NPR C_L $C_{(D-F)}$ C_T C_L C_{La} C_{Da} C_{Da} C_{Ta} C_{La} C_{L</td><td>α, deg NPR C_L $C_{(D-F)}$ C_m C_f C_L C_{La} C_{Da} C_{ma} C_{ma}</td><td>α, deg</td></td<>	α , degNPR C_L $C_{(D-F)}$ C_m C_F C_L C_La C_{La} C_{Da} C_{ma} C_{Fa} C_{ma} C_{m	α , degNPR C_L $C_{(D-F)}$ C_m C_Y C_L C_La C_{La} $C_{Da}a$ C_{ma} C_{ya} C_{ma} $C_{$	α , degNPR C_L $C_{(D-F)}$ C_m C_Y C_L C_La $C_{Da}a$	α , deg NPR C_L $C_{(D-F)}$ C_m C_L C_{La} C_{Da} C_{D	α , deg NPR C_L $C_{(D-F)}$ C_T C_L C_{La} C_{Da} C_{Da} C_{Ta} C_{La} C_{L	α , deg NPR C_L $C_{(D-F)}$ C_m C_f C_L C_{La} C_{Da} C_{ma}	α, deg

Table 27. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 20^{\circ}; \delta_{B,E} = -10^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

		0.0003 0.0003 0.0003 0.0001 0.0015 0.0015 0.0015 0.0023 0.	0.0023 0.0024 0.0031 -0.0003
		0.0019 0.0019 0.0015 0.0015 0.0015 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0024 0.0027 0.	0.0024 0.0025 0.0002 0.0007
	C ₁ 0.0000 0.0001 0.0001	$C_{Y,a}$ -0.0061 -0.0050 -0.0050 -0.0052 -0.0052 -0.0052 -0.0053 -0.0040 -0.0075 -0.0078	-0.0070 -0.0077 -0.0001 -0.0020
	C _n -0.0001 -0.0002 -0.0002	C _{m,a} 0.1001 0.0882 0.0757 0.0606 0.0642 0.0642 0.0921 0.123 0.123 0.123 0.1006 0.0441 0.329 0.3365 0.1006 0.0441 0.3365 0.0078 0.0078 0.0078 0.0078 0.0065 0.0065 0.0065	-0.3241 -0.3506 -0.4441 0.1055
	CF.S 0.0002 0.0004 0.0007	$C_{D,a}$ 0.0181 0.0264 0.0296 0.0296 0.0316 0.0312 0.0489 0.0580 0.0698 0.0698 0.0703 0.1221 0.1340 0.1463 0.0529 0.0339 0.0339 0.0339 0.0339 0.0339 0.0339 0.0325 0.1730 0.0325 0.0325 0.0325	0.1486 0.1624 0.2165 0.0195
eristics	C _m -0.0021 -0.0038 -0.0061 -0.0090	C_{La} -0.0724 -0.0529 -0.0523 -0.0450 0.0401 0.0378 0.0418 0.0568 0.1579 0.1579 0.1696 0.1927 -0.0316 -0.0316 0.0394 0.0918 0.0918 0.0918 0.0918	0.1682 0.1804 0.2200 -0.0758
(a) Static ($M = 0$) performance characteristics	δy. deg CFj CFN Cm 1.06 -0.0098 0.0012 -0.002 1.17 -0.0186 0.0021 -0.003 1.40 -0.0282 0.0031 -0.006 1.18 -0.0352 0.0046 -0.005 (b) Aeropropulsive performance characteristics	C_l C_l -0.0003 -0.0005 -0.0005 -0.0005 0.0015 0.0017 0.0021 0.0022 0.0024 0.0024 0.0024 0.0024 0.0024 0.0027 0.0030 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.0030 0.0031 0.0039 -0.0003
(=0) perform	CF _j -0.0098 -0.0186 -0.0282 -0.0352	C _n 0.00019 0.0007 0.0003 0.00017 0.00058 0.00058 0.00057 0.00061 0.00007	-0.0008 -0.0007 -0.0030 0.0007
(a) Static (A	δ _y , deg 1.06 1.17 1.40 1.18 (b) Aeroprop	C_Y -0.0061 -0.0021 0.0055 0.0136 0.0136 0.0136 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0138 0.0203 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.0039 0.0032 0.0107 -0.0020
	δ _p , deg 7.06 6.43 6.26 7.37	C _m 0.1001 0.0549 0.0152 -0.0360 -0.0754 -0.0861 -0.1253 -0.1607 -0.2116 -0.2715 -0.2715 -0.350 -0.3605 -0.3861 -0.0371 -0.0371 -0.0371 -0.0371	-0.4212 -0.4478 -0.5413 0.1055
	F _J F _i 0.9230 0.9131 0.8999 0.8883	$C_{(D-F)}$ 0.0181 -0.1311 -0.2626 -0.4089 -0.5160 0.0489 -0.5160 0.0489 -0.5160 0.0489 -0.313 -0.4526 0.1221 -0.0005 -0.1100 -0.2317 -0.3221 0.0157 0.0229 0.0339 0.0501 0.0805 0.1730 0.1730 0.1730 0.1730 0.1730 0.1730 0.1730 0.1730 0.1730 0.1730	-0.2344 -0.2144 -0.1382 0.0195
	F,F; 0.9302 0.9191 0.9056 0.8959	C_L -0.0724 -0.0435 -0.0196 0.0085 0.0253 0.0401 0.0969 0.1509 0.2147 0.2717 0.1420 0.2147 0.2147 0.2147 0.3993 0.4785 -0.0722 -0.0316 0.0918 0.0918 0.0918 0.1927 0.0083 0.0752 0.0083	0.4006 0.4239 0.4926 -0.0758
	NPR 2.00 3.01 4.15 5.03	NPR 1.00 2.03 3.03 3.03 3.03 1.00 1.00 1.00 1.00 1	4.14 4.14 4.16 0.99
		α, deg -0.02 -0.03 -0.03 -0.03 -0.03 -0.03 -0.03 15.00 14.98 14.98 14.98 14.98 14.98 14.98 14.98 14.98 14.99 16.00	24.99 26.61 31.28 0.16
		0.298 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.303 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.302 0.303	0.300 0.300 0.301 0.500

	$C_{l,a}$	-0.0004	-0.0005	-0.0007	-0.0007	0.0014	0.0013	0.0014	0.0014	0.0014	0.0015	0.0015	0.0014	0.0012	0.0013	-0.0004	-0.0002	-0.0003	0.0014	0.0014	0.0014	0.0018	-0.0007	-0.0003	-0.0003	0.0014	0.0013	0.0014	0.0018
	$C_{n,a}$	0.0010	0.0010	0.0010	0.0008	-0.0024	-0.0021	-0.0017	-0.0011	-0.0012	-0.0003	-0.0001	0.0004	0.0010	0.0010	0.0008	0.0010	0.0002	-0.0023	-0.0005	400004	-0.0036	0.0014	0.0007	0.0003	-0.0006	0.0012	0.0017	-0.0009
	$C_{Y,a}$	-0.0029	-0.0026	-0.0031	-0.0021	0.0079	0.0064	0.0057	0.0038	0.0038	0.0016	0.0005	-0.0012	-0.0039	-0.0036	-0.0020	-0.0027	-0.0001	0.0071	0.0022	0.0016	0.0114	-0.0042	-0.0022	-0.0011	0.0016	-0.0040	-0.0060	0.0018
	$C_{m,a}$	0.0976	0.0903	0.0799	0.0740	-0.1075	-0.1165	-0.1255	-0.1369	-0.1405	-0.2927	-0.3082	-0.3187	-0.3295	-0.3392	0.1047	0.0482	-0.0061	-0.1059	-0.2003	-0.2926	-0.3774	0.0799	0.0228	-0.0260	-0.1359	-0.2322	-0.3295	-0.4209
	$C_{D,a}$	0.0227	0.0248	0.0264	0.0263	0.0369	0.0418	0.0449	0.0484	0.0480	0.1077	0.1126	0.1163	0.1214	0.1219	0.0184	0.0202	0.0244	0.0357	0.0655	0.1076	0.1535	0.0257	0.0291	0.0340	0.0469	0.0784	0.1202	0.1685
	$C_{L,a}$	-0.0698	-0.0642	-0.0558	-0.0515	0.0588	0.0632	0.0687	0.0763	0.0786	0.1697	0.1772	0.1825	0.1883	0.1954	-0.0762	-0.0353	-0.0027	0.0571	0.1159	0.1701	0.2106	-0.0567	-0.0173	0.0077	0.0746	0.1329	0.1896	0.2336
cluded	C_I	-0.0004	-0.0004	-0.0003	-0.0003	0.0014	0.0013	0.0015	0.0017	0.0018	0.0015	0.0014	0.0015	0.0016	0.0017	-0.0004	-0.0002	-0.0003	0.0014	0.0014	0.0014	0.0018	-0.0004	-0.0001	-0.0001	0.0017	0.0017	0.0017	0.0022
Table 27. Concluded	<i>C</i> "	0.0007	0.0003	-0.0001	-0.0004	-0.0024	-0.0024	-0.0024	-0.0024	-0.0024	-0.0003	-0.0003	-0.0003	-0.0001	-0.0002	0.0008	0.0010	0.0002	-0.0023	-0.0005	-0.0004	-0.0036	0.0003	-0.0004	-0.0009	-0.0017	0.0001	0.0005	-0.0020
	C_{Y}	-0.0019	-0.0005	0.0009	0.0021	0.0079	0.0074	0.0079	0.0077	0.0079	0.0016	0.0015	0.0009	0.0001	0.0005	-0.0020	-0.0027	-0.0001	0.0071	0.0022	0.0016	0.0114	-0.0003	0.0017	0.0028	0.0054	-0.0001	-0.0020	0.0057
	C,,	0.0856	0.0683	0.0442	0.0231	-0.1075	-0.1286	-0.1476	-0.1728	-0.1915	-0.2927	-0.3202	-0.3409	-0.3661	-0.3903	0.1047	0.0482	-0.0061	-0.1059	-0.2003	-0.2926	-0.3774	0.0451	-0.0125	-0.0610	-0.1707	-0.2675	-0.3649	-0.4562
	$C_{(D-F)}$	-0.0339	-0.0817	-0.1355	-0.1737	0.0369	-0.0113	-0.0553	-0.1043	-0.1390	0.1077	0.0640	0.0241	-0.0201	-0.0491	0.0184	0.0202	0.0244	0.0357	0.0655	0.1076	0.1535	-0.1335	-0.1300	-0.1209	-0.1024	-0.0675	-0.0187	0.0377
	C_L	-0.0628	-0.0522	-0.0378	-0.0257	0.0588	0.0846	0.1080	0.1360	0.1554	0.1697	0.2076	0.2388	0.2747	0.3037	-0.0762	-0.0353	-0.0027	0.0571	0.1159	0.1701	0.2106	-0.0392	0.0145	0.0530	0.1328	0.2050	0.2739	0.3297
	NPR	2.01	3.02	4.1 8	5.01	0.9	2.01	3.03	4.19	5.02	0.97	2.01	3.03	4.22	5.05	0.99	0.99	0.99	0.00	0.98	0.97	96.0	4.15	4.17	4.15	4.16	4.15	4.17	4.16
	α, deg	-0.02	-0.03	0.01	0.00	14.98	14.98	15.01	15.02	14.96	24.99	24.98	24.98	25.00	25.00	0.01	5.02	90.5	15.00	20.00	24.99	30.00	0.01	2.00	10.02	15.01	20.01	24.97	29.99
	M	0.501	0.501	0.501	0.501	0.501	0.501	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.500	0.501	0.501	0.499	0.501	0.500	0.499	0.503	0.501	0.501	0.504	0.499	0.500	0.500

Table 28. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 25^{\circ}; \delta_{B,E} = -10^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

		ζ,	<u>.</u>	-0.0007	-0.0005	-0.0012	0.0014	0.0014	0.0017	0.0015	0.0013	0.0022	0.0023	0.0025	0.0019	0.0017	0.0034	0.0024	0.0023	0.0021	0.0047	0.0047	0.0044	0.0038	0.0024	-0.0004	0.0000	0.0001	0.0016	0.0017	0.0022
			7000	0.0030	0.0023	0.0003	0.004	-0.0032	-0.0024	-0.0024	-0.0020	0.0003	0.0032	0.0049	0.0056	0.0051	0.000	0.0027	0.0029	0.0025	-0.0003	0.0011	0.0022	0.0025	0.0021	0.0013	0.0008	0.0005	-0.0053	0.0010	0.0001
	C_I 0.0000 0.0000 0.0001 0.0002	Ĉ,	2,000	-0.0111	-0.0072	0.0002	0.0126	0.0083	0.0075	0.0073	0.0062	-0.0017	-0.0116	-0.0163	-0.0188	0.0166	0.0011	-0.0111	-0.0123	-0.0114	0.0029	-0.0032	-0.0062	-0.0082	-0.0072	-0.0048	-0.0027	-0.0017	0.0171	0.0029	0.0057
	C _n -0.0001 -0.0003 -0.0003	Č	7000	0.0693	0.0472	0.0303	-0.0805	-0.1069	-0.1283	-0.1374	-0.1452	-0.2725	-0.3088	-0.3353	0.3464	0.3361	-0.5242	-0.6154	-0.6415	-0.6520	-0.6225	-0.6615	-0.7059	-0.7214	-0.7348	0.0984	0.0435	-0.0093	-0.0834	0.1813	-0.2728 -0.3610
	C _{F,S} 0.0004 0.0006 0.0007	Co.	0.0152	0.0252	0.0276	0.0339	0.0445	0.0600	0.0648	0.0727	0.0765	0.1202	0.1385	0.1476	0.1564	0.1629	0.2695	0.3084	0.3207	0.3260	0.3983	0.4138	0.4373	0.4475	0.4572	0.0133	0.0207	0.0314	0.0464	0.0779	0.1219
ristics	<i>C_m</i> -0.0032 -0.0060 -0.0102 -0.0132 teristics	Cr.	2,700	0.0470	-0.0293	-0.0342	0.0359	0.0503	0.0658	0.0703	0.0753	0.1441	0.1647	0.1829	0.1878	0.1937	0.2520	0.2995	0.3098	0.3130	0.2007	0.2248	0.2462	0.2512	0.2540	-0.0692	-0.0298	90000	0.0392	0.0958	0.1851
(a) Static ($M = 0$) performance characteristics	δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} 2.62 -0.0092 0.0017 -0.003 1.97 -0.0170 0.0030 -0.006 1.57 -0.0262 0.0052 -0.016 1.25 -0.0331 0.0067 -0.013	C	, 000	-0.0003	0.0001	0.000	0.0014	0.0017	0.0024	0.0030	0.0035	0.0022	0.0026	0.0031	0.0034	0.0040	0.0034	0.0029	0.0037	0.0043	0.0047	0.0051	0.0050	0.0052	0.0047	-0.000 4	0.0000	0.0001	0.0016	0.0017	0.0022
= 0) perform	$C_{F,j}$ -0.0092 -0.0170 -0.0262 -0.0331	ن.	,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,	0.0020	-0.0008	0.0031	0.0044	-0.0051	-0.0054	-0.0061	-0.0059	0.0003	0.0012	0.0017	0.0017	0.0011	9000	-0.0003	-0.0009	-0.0014	-0.0003	-0.0008	-0.0009	-0.0013	-0.0019	0.0013	0.0008	0.0005	-0.0053	-0.0010	0.0001 -0.0018
(a) Static (M	8y, deg 2.62 1.97 1.57 1.25 (b) Aeropropi	20	, 000	0.00 4	0.0020	0.000	0.0126	0.0150	0.0167	0.0186	0.0175	-0.0017	-0.0047	6900.0	-0.0073	0.0051	0.001	-0.0019	-0.0009	0.0000	0.0029	0.0035	0.0031	0.0034	0.0044	-0.0048	-0.0027	-0.0017	0.0171	0.0029	0.0057
	δ _p , deg 10.57 9.88 11.13 11.53	. . .	<u>"</u>	0.0173	-0.0491	0.1629	-0.0805	-0.1588	-0.2232	-0.2987	-0.3531	-0.2725	-0.3627	-0.4331	0.5114	-0.5706	-0.5242	-0.7097	-0.8010	-0.8614	-0.6225	-0.7131	-0.8014	-0.8838	-0.9477	0.0984	0.0435	-0.0093	-0.0834	-0.1813	-0.2728
	F _J F _i 0.8516 0.8328 0.8324 0.8322	C_{D-E}	00162	0.1217	-0.2449	0.3865	0.0445	-0.0748	-0.1827	-0.3079	-0.3984	0.1202	0.0121	-0.0825	-0.1937	0.2764	0.2695	0.1520	0.0862	0.0308	0.3983	0.3644	0.3426	0.3089	0.2849	0.0133	0.0207	0.0314	0.0464	0.0779	0.1219
	F _f /F _i 0.8672 0.8499 0.8487	Ú	01200	-0.0197	0.0184	7,470	0.0359	0.1147	0.1806	0.2570	0.3125	0.1441	0.2549	0.3437	0.4436	0.5193	0.2526	0.5219	0.6590	0.7589	0.2007	0.3647	0.5046	0.6560	0.7697	-0.0692	-0.0298	9000.0	0.0392	0.0958	0.1446 0.1851
	NPR 2.00 3.01 4.16 5.00	NPR	5	2.03	3.04	5.07	1.00	2.03	3.02	4.20	5.01	0.99	2.05	3.03	4.21	2.06	0.98 0.08	3.00	4.14	5.01	0.97	2.00	3.00	4.15	5.01	9:	9.	9:	00.	0.60 0.60 0.60	0.99
		α. deg	300	0.00	0.00	200	14.98	15.01	14.97	14.98	15.00	25.12	24.99	25.01	25.00	24.99	45.01	45.00	45.00	44.97	60.01	59.99	59.99	59.98	59.99	0.01	5.01	10.01	15.00	20.00	30.00
		W	0 300	0.301	0.301	0.301	0.301	0.302	0.302	0.302	0.302	0.299	0.299	0.299	0.299	0.299	0.302	0.301	0.301	0.301	0.300	0.299	0.299	0.298	0.298	0.302	0.302	0.302	0.302	0.300	0.298

$C_{I,a}$	00000	0.0029	0.0025	0.0021	0.0030	0.0030	0.0020	0.0024	0.0047	0.0045	0.0044	0.0059	-0.0008	-0.0005	-0.0004	0.0017	0.0018	0.0021	0.0026	0.0028	0.0026	0.0032	0.0025	0.0021	0.0019	0.0030	0.0034	0.0039	0.0010	0.0030	-0.0004	-0.0004	-0.0004	-0.0005	-0.0006	0.0013	0.0013	0.0013	0.0012	0.0011	0.0012	0.0013	0.0012	0.0012	0.0011
<i>C.,</i>	71000	0.0014	-0.0030	-0.0022	-0.0035	-0.0026	-0.0001	-0.0001	-0.0015	-0.0013	-0.0025	-0.0044	-0.0003	0.0002	0.0004	0.0044	0.0017	0.0035	0.0015	0.0016	0.0006	-0.0022	-0.0004	0.0003	0.0030	0.0040	0.0024	0.0023	-0.0044	0.0011	0.0000	0.0015	0.0017	0.0013	0.0005	-0.0022	-0.0016	-0.0010	-0.0007	-0.0007	0.0001	0.0007	0.0012	0.0015	0.0019
$C_{Y,a}$	0.0030	0.0039	0.0086	0.0067	0.0115	0.0085	0.0003	0.0004	0.0065	0.0066	0.0098	0.0159	0.0013	0.0001	-0.0010	0.0144	-0.0050	-0.0115	-0.0049	-0.0055	-0.0030	0.0043	-0.0017	-0.0042	-0.0126	-0.0132	-0.0079	-0.0065	0.0102	-0.0042	-0.0031	-0.0049	-0.0047	-0.0035	-0.0008	0.0064	0.0045	0.0028	0.0019	0.0016	-0.0005	-0.0028	-0.0045	-0.0056	-0.000
<i>C</i>	0 3871	-0.3985	-0.4358	-0.4619	-0.4946	-0.5245	-0.5792	-0.5745	-0.5949	-0.6180	-0.6819	-0.7253	0.0531	-0.0046	-0.0612	-0.1414	-0.2488	-0.3452	-0.4436	-0.4674	-0.4866	-0.5424	-0.5732	-0.6008	-0.6349	-0.6711	-0.7013	-0.7165	-0.7151	-0.7211	0.1066	0.0888	0.0752	0.0676	0.0645	-0.1070	-0.1258	-0.1381	-0.1470	-0.1528	-0.2952	-0.3172	-0.3311	0.3432	-0.3344
$C_{D,a}$	0 1866	0.1514	0.1845	0.2074	0.2346	0.2668	0.3218	0.3197	0.3600	0.3959	0.4551	0.4932	0.0380	0.0463	0.0578	0.0745	0.1070	0.1559	0.2086	0.2210	0.1921	0.2319	0.2566	0.2816	0.3157	0.3648	0.4100	0.4433	0.4679	0.4828	0.0188	0.0223	0.0243	0.0262	0.0285	0.0359	0.0426	0.0459	0.0493	0.0520	0.1074	0.1132	0.1176	0.1224	0.1427
$C_{L,a}$	0.1965	0.2181	0.2301	0.2378	0.2483	0.2515	0.2527	0.2495	0.2254	0.1969	0.1757	0.1572	-0.0364	0.0025	0.0327	0.0737	0.1354	0.1839	0.2283	0.2387	0.2606	0.2802	0.2892	0.2963	0.3026	0.2950	0.2783	0.2485	0.1997	0.1733	-0.0766	-0.0634	-0.0529	-0.0474	-0.0452	0.0584	0.0/05	0.0/89	0.0840	0.0874	0.1724	0.1850	0.1933	0.199/	0.2021
C_{l}	0.000	0.0029	0.0025	0.0021	0.0030	0.0030	0.0020	0.0024	0.0047	0.0045	0.0044	0.0059	9000.0	0.0010	0.0010	0.0031	0.0033	0.0036	0.0041	0.0043	0.0040	0.0046	0.0039	0.0036	0.0033	0.0045	0.0049	0.0053	0.0024	0.0044	-0.0004	-0.0003	-0.0002	0.0000	0.0002	0.0013	0.0014	0.0016	0.0017	0.0019	0.0012	0.0014	0.0015	0.001/	0.0013
"	-0.0014	-0.0029	-0.0030	-0.0022	-0.0035	-0.0026	-0.0001	-0.0001	-0.0015	-0.0013	-0.0025	-0.0044	-0.0040	-0.0036	-0.0033	0.0080	070070	-0.0003	-0.0024	-0.0023	-0.0031	-0.0059	-0.0042	-0.0035	-0.0008	0.0002	-0.0015	-0.0015	-0.0082	-0.0027	0.0000	0.0008	0.0006	-0.0001	-0.0010	-0.0022 0.0022	-0.0023	-0.0021	-0.0021	-0.0021	0.0001	0.0000	0.0002	0.0002	t000.0
C_{Y}	0.0039	0.0092	9800.0	0.0067	0.0115	0.0085	0.0003	0.0004	0.0065	9900'0	0.0098	0.0159	0.0125	0.0114	0.0103	0.0257	0.0004	0.0001	0.0066	0.0061	0.0083	0.0156	9600.0	0.0072	-0.0012	-0.0017	0.0038	0.0048	0.0218	0.0074	-0.0031	-0.0025	-0.0013	0.0006	0.0033	0.0064	0.000	0.0062	0.0060	0.0058	-0.0005	40.0004	-0.0012	-0.0015 -0.0023	1300.0
ر"	-0 3871	-0.3985	-0.4358	-0.4619	-0.4946	-0.5245	-0.5792	-0.5745	-0.5949	-0.6180	-0.6819	-0.7253	-0.1080	-0.1648	-0.2207	-0.3013	-0.4102	-0.509/	-0.60/4	-0.6310	-0.6456	-0.7019	-0.7329	-0.7617	-0.7958	-0.8331	-0.8656	-0.8762	-0.8789	-0.8840	0.1066	0.0700	0.0401	0.0105	0.0109	-0.10/0	-0.144/	-0.1730	-0.2047	-0.2286	-0.2952	-0.3363	-0.3652	-0.4008 -0.4288	0041
$C_{(D-F)}$	0.1866	0.1514	0.1845	0.2074	0.2346	0.2668	0.3218	0.3197	0.3600	0.3959	0.4551	0.4932	-0.3778	-0.3585	-0.3340	-0.3036	0.2370	-0.1938	0.1160	-0.0976	-0.0984	0.0432	-0.0073	0.0274	0.0793	0.1585	0.2343	0.3070	0.3644	0.4022	0.0188	0.0309	0.0/49	0.1217	-0.1002	0.0359	0.0065	0.0453	0.08/3	0.1211	0.10/4	0.0684	0.0370	-0.0003 -0.0312	1
C_L	0.1965	0.2181	0.2301	0.2378	0.2483	0.2515	0.2527	0.2495	0.2254	0.1969	0.1757	0.1572	0.0457	0.1197	0.1841	0.2593	0.5550	0.4391	0.5115	0.5287	0.5625	0.5978	0.6168	0.6354	0.6546	0.6689	0.6744	0.6464	0.6184	0.5949	-0.0766	-0.0535	-0.0355	-0.0184	-0.0008	0.0384	0.0939	0.1212	0.1509	0.1/38	0.1724	0.2169	0.2495	0.2692)
NPR	0.99	0.99	0.99	0.98	0.98	86.0	0.98	96.0	0.98	0.98	0.97	0.97	4.19	4.19	4.17	4.17	01.4	4. Ly	4. 1 7. i	4.17	4.IS	4.16	4.16	4.16	4.15	4.15	4.15	4.16	4.16	4.15	0.99	2.03	3.C	4.11	6,7		20.7	20.6	4.13	2.02	76.0	2. S	66.7	5.14) }
α, deg	31.54	35.26	38.03	39.98	42.02	45.01	50.00	50.01	55.02	60.02	65.01	68.35	0.05	5.00	00.01	15.00	19.91	26.98	06.67	31.18	34.99	37.97	40.01	42.01	45.00	49.99	54.97	29.97	65.00	68.07	0.05	0.01	0.03	0.01	5.0	14.99	20.01	20.00	14.9/	14.98	70.07	24.98	24.98	27.00	:
M	0.299	0.298	0.300	0.300	0.299	0.299	0.303	0.303	0.301	0.299	0.298	0.300	0.302	0.302	0.302	0.302	0000	0.298	667.0	0.298	0.302	0.301	0.301	0.300	0.300	0.299	0.296	0.301	0.298	0.298	0.500	0.501	0.500	0.300	0.499	0.498	0.490	0.470	2,430	0.500	0.501	0.500	0.500	0.50) }

	$C_{l,a}$	-0.0003	-0.0001	-0.0003	0.0014	0.0012	0.0015	0.0017	-0.0005	-0.0003	0.0004	0.0014	0.0012	0.0012	0.0017
	$C_{n,a}$	0.0014	0.0012	0.0005	-0.0018	0.0002	0.0005	-0.0025	0.0016	0.0008	0.0008	-0.0003	0.0020	0.0027	-0.0003
	$C_{Y,a}$	-0.0048	-0.0041	-0.0019	0.0050	-0.0008	-0.0021	0.0074	-0.0050	-0.0025	-0.0032	0.0003	-0.0069	-0.0097	-0.0004
	$C_{m,a}$	0.1041	0.0471	-0.0061	-0.1086	-0.2026	-0.2939	-0.3791	0.0660	0.0163	-0.0396	-0.1463	-0.2442	-0.3426	-0.4346
	$C_{D,a}$	0.0169	0.0192	0.0233	0.0356	0.0649	0.1065	0.1528	0.0254	0.0287	0.0345	0.0473	0.0777	0.1219	0.1716
	$C_{L,a}$	-0.0748	-0.0337	-0.0022	0.0595	0.1183	0.1713	0.2131	-0.0455	-0.0127	0.0186	0.0830	0.1435	0.1998	0.2451
Concluded	C_I	-0.0003	-0.0001	-0.0003	0.0014	0.0012	0.0015	0.0017	-0.0001	0.0002	0.0001	0.0019	0.0017	0.0017	0.0023
Table 28. Co	ر,	0.0014	0.0012	0.0005	-0.0018	0.0002	0.0005	-0.0025	0.0003	-0.0005	-0.0005	-0.0017	0.0007	0.0013	-0.0016
	C_{Y}	-0.0048	-0.0041	-0.0019	0.0050	-0.0008	-0.0021	0.0074	-0.0009	0.0015	0.0009	0.0044	-0.0028	-0.0056	0.0037
	C_{m}	0.1041	0.0471	-0.0061	-0.1086	-0.2026	-0.2939	-0.3791	9800.0	-0.0408	-0.0969	-0.2039	-0.3018	-0.4006	-0.4928
	$C_{(D-F)}$	0.0169	0.0192	0.0233	0.0356	0.0649	0.1065	0.1528	-0.1232	-0.1162	-0.1066	-0.0892	-0.0524	-0.0017	0.0563
	C_L	-0.0748	-0.0337	-0.0022	0.0595	0.1183	0.1713	0.2131	-0.0163	0.0291	0.0732	0.1499	0.2219	0.2899	0.3457
	NPR	0.99	0.99	0.99	0.60	0.98	0.97	96:0	4.13	4.14	4.14	4.14	4.14	4.16	4.18
	α, deg	0.05	4.98	10.00	14.99	19.99	24.98	29.98	0.00	4.98	10.03	14.98	19.97	24.96	29.98
	M	0.502	0.501	0.501	0.499	0.500	0.499	0.498	0.500	0.502	0.501	0.500	0.500	0.500	0.501

Table 29. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 10^{\circ}; \, \delta_{C,F} = 10^{\circ}\right]$

				$C_{l,a}$	0.0000	0.0020	-0.0008	6.0011	6.0013	0.0013	0.0010	0.0011	0.0008	0.0008	0.0019	0.0022	0.0019	0.0019	-0.0006	0.0004	0.0010	0.0014	0.0019	0.0027	0.0027	-0.0010	-0.0009	0.0000	0.000	0.0019	0.0029
				$C_{n,a}$	-0.0051	0.0024	0.0022	0.0019	0.0019	0.005	-0.0043	-0.0044	-0.0040	-0.0039	0.0003	0.0003	0.0009	-0.0002	0.0015	0.0009	-0.0052	-0.0017	-0.0003	-0.0018	-0.0017	0.0011	0.0006	0.0002	0.0048 0.0048	-0.0010	-0.0023
	C ₁	0.0000		$C_{Y,a}$	0.0156	0.0029	-0.0078	0.0071	0.0073	0.0132	0.0131	0.0139	0.0126	0.0125	9000	-0.0017	-0.0036	-0.0002	-0.0045	-0.0025	0.0170	0.0058	0.0010	0.0065	0.0056	-0.0033	-0.0019	0.0003	0.0104	0.0030	0.0075
	C, 0.0000	0.0000		$C_{m,a}$	-0.0759	0.1054	0.0962	0.0998	0.1028	-0.0757	-0.0723	-0.0722	-0.0715	0.0731	-0.2546	-0.2516	-0.2473	-0.2440	0.1060	0.052/	-0.0775	-0.1726	-0.2621	-0.3492	-0.3795	0.0997	0.0480	0.002/	0.0743	-0.2449	-0.3395
	$C_{F,S}$	0.0001		$C_{D,a}$	0.0476	0.0184	0.0277	0.0329	0.0328	0.0469	0.0559	0.0597	0.0597	0.0628	0.1150	0.1306	0.1266	0.1256	0.0156	0.0221	0.0484	0.0788	0.1210	0.1687	0.1864	0.0341	0.0423	0.0473	0.0885	0.1290	0.1779
teristics	C _m 0.0000	0.0002 0.0005 0.0015	cteristics	$C_{L,a}$	0.0336	-0.0751	-0.0664	0.0689	0.0689	0.0327	0.0285	0.0275	0.0264	0.0275	0.1288	0.1230	0.1205	0.1175	-0.0750	-0.03/3	0.0353	0.0888	0.1369	0.1762	0.1900	-0.0675	0.0322	0.0083	0.030	0.1167	0.1585
(a) Static ($M = 0$) performance characteristics	$C_{F,N}$ 0.0001	0.0001	(b) Aeropropulsive performance characteristics	C_I	0.0000	90000	0.0011	0.0016	-0.0018	0.0011	0.0008	0.0007	0.0003	0.0003	0.0017	0.0017	0.0015	0.0014	90000	0.0004	0.0010	0.0014	0.0019	0.0027	0.0027	-0.0014	-0.0013	0.0013	0.0000	0.0014	0.0024
И = 0) perfon	$C_{F,j}$ -0.0105	-0.0199 -0.0303 -0.0378	pulsive perfor	<i>C</i> "	-0.0051	0.0024	0.0022	0.0016	0.0003	0.004	-0.0043	-0.0048	-0.0052	0.0037	0.0002	0.0000	-0.0003	-0.0019	0.0015	0.0009	-0.0052	-0.0017	-0.0003	-0.0018	-0.0017	-0.0002	0.000		-0.0037	-0.0022	-0.0036
(a) Static (A	δ_y , deg 0.12	0.30 0.54 0.58	(b) Aeroprol	C_Y	0.0156	-0.0083	-0.0075	0.0035	-0.0013	0.0132	0.0134	0.0155	0.0171	0.0183	-0.0005	0.0000	0.0009	0.0058	0.0045	-0.0023	0.0170	0.0058	0.0010	0.0065	0.0056	0.0012	0.0020	0.0041	0.0124	0.0076	0.0120
	δ_p , deg 0.44	0.31 0.06 -0.66		C _m	-0.0759	0.1054	0.0965	0.1024	0.1260	-0.0757	-0.0719	96900	-0.0634	0.0499	-0.2543	-0.2489	-0.2392	-0.2209	0.1060	-0.007 -0.0004	-0.0775	-0.1726	-0.2621	-0.3492	0.3/95	0.10/8	0.000	0.0100	-0.1460	-0.2367	-0.3312
	$F_f F_i$ 0.9809	0.9786 0.9680 0.9544		$C_{(D-F)}$	0.0476	0.0184	-0.1342	-0.2816	-0.5609	0.0469	-0.1027	-0.2445	0.4040	0.5145	-0.0204	-0.1600	-0.3042	-0.4185	0.0156	0.0325	0.0484	0.0788	0.1210	0.1687	0.1864	0.4458	5.430	-0.4028	-0.3654	-0.3124	-0.2451
	F_{ν}/F_{i} 0.9809	0.9786 0.9681 0.9545		C^{Γ}	0.0336	-0.0751	-0.0652	L0.06/3	-0.0752	0.0327	0.0724	0.1107	0.1512	0.1363	0.1985	0.2604	0.3220	0.3641	0.0750	-0.0063	0.0353	0.0888	0.1369	0.1762	0.1900	0.00	0.0751	0.1553	0.2346	0.3227	0.4035
	NPR 2.02	3.02 4.16 5.04		NPR	0.00	1.00	2.00	3.01 4 15	2.00	1.00	2.00	3.01	5.15	0.60	2.00	3.00	4.15	4.98	3.5	8.1	1.00	0.0	0.00	0.99	6.7	4.15 7.17	4.17	1 4 1 4	4.15	4.15	4.16
				α, deg	14.99	-0.01	0.00	0.02	0.02	14.99	15.01	14.98	15.00	25.03	25.00	24.99	25.00	25.01	10.0 v	10.02	15.01	20.01	25.02	29.98	91.07	3.5	0.0	14.98	19.97	24.97	30.02
				M	0.300	0.300	0.302	0.30	0.300	0.300	0.300	0.300	0.300	0.301	0.301	0.296	0.301	0.299	0.301	0.301	0.300	0.300	0.300	0.298	0.502	0.300	0.301	0.299	0.299	0.298	0.298

Table 29. Concluded

$C_{l,a}$	0.0027	-0.0005	-0.0006	-0.0006	-0.0007	-0.0009	0.0011	0.0011	0.0010	0.0010	0.0010	0.0012	0.0013	0.0012	0.0012	0.0012	9000.0	-0.0003	-0.0005	0.0011	0.0011	0.0013	0.0016	-0.0007	0.0004	9000.0	0.0011	0.0011	0.0014	0.0019
$C_{n,a}$	-0.0023	0.0010	0.0009	0.0010	0.0010	0.0013	-0.0022	-0.0024	-0.0025	-0.0025	-0.0024	0.0002	0.0001	0.0001	0.0006	9000.0	0.0012	0.0012	0.0005	-0.0022	-0.0002	0.0002	-0.0029	0.0013	0.0011	9000:0	-0.0019	0.0003	0.0013	-0.0017
$C_{Y,a}$	0.0065	-0.0030	-0.0025	-0.0029	-0.0033	-0.0042	0.0067	0.0076	0.0079	0.0078	0.0074	-0.0005	-0.0004	90000	-0.0026	-0.0029	-0.0038	-0.0042	-0.0019	0.0062	0.0009	-0.0008	0.0093	-0.00 4	-0.0041	-0.0024	0.0052	-0.0016	-0.0053	0.0044
$C_{m,a}$	-0.3658	0.1123	0.1017	0.1016	0.1020	0.1053	-0.0978	-0.0958	-0.0946	-0.0937	-0.0920	-0.2843	-0.2820	-0.2813	-0.2791	-0.2777	0.1105	0.0551	0.0003	-0.0975	-0.1932	-0.2830	-0.3693	0.1006	0.0466	0.0011	-0.0912	-0.1854	-0.2791	-0.3690
$C_{D,a}$	0.1908	0.0196	0.0231	0.0259	0.0271	0.0282	0.0347	0.0383	0.0400	0.0405	0.0401	0.1044	0.1070	0.1076	0.1079	0.1066	0.0186	0.0189	0.0225	0.0348	0.0635	0.1041	0.1497	0.0267	0.0272	0.0290	0.0391	0.0673	0.1071	0.1535
$C_{L,a}$	0.1710	-0.0802	-0.0715	-0.0712	-0.0715	-0.0740	0.0526	0.0506	0.0491	0.0479	0.0466	0.1656	0.1620	0.1597	0.1571	0.1561	-0.0792	-0.0393	-0.0062	0.0523	0.1124	0.1650	0.2075	-0.0707	-0.0330	-0.0076	0.0447	0.1035	0.1583	0.2022
<i>'</i> 2	0.0022	-0.0005	-0.0007	-0.0008	-0.0009	-0.0010	0.0011	0.0010	0.0010	0.0009	0.0008	0.0012	0.0012	0.0010	0.0010	0.0010	9000.0	-0.0003	-0.0005	0.0011	0.0011	0.0013	0.0016	-0.0009	-0.0006	-0.0008	0.0010	0.0010	0.0012	0.0017
"	-0.0035	0.0010	0.000	0.000	9000.0	0.0007	-0.0022	-0.0024	-0.0027	-0.0030	-0.0030	0.0002	0.0001	-0.0001	0.0002	0.0000	0.0012	0.0012	0.0005	-0.0022	-0.0002	0.0002	-0.0029	0.0000	0.0007	0.0001	-0.0024	-0.0002	0.0009	-0.0022
$C_{\mathbf{Y}}$	0.0109	-0.0030	-0.0024	-0.0023	-0.0017	-0.0021	0.0067	0.0077	0.0084	0.0094	0.0095	-0.0005	-0.0003	0.0000	-0.0009	-0.0007	-0.0038	-0.0042	-0.0019	0.0062	0.0009	-0.0008	0.0093	-0.0028	-0.0025	-0.0008	0.0068	0.0000	-0.0037	0900.0
C,	-0.3578	0.1123	0.1019	0.1025	0.1050	0.1139	-0.0978	-0.0957	-0.0936	-0.0908	-0.0837	-0.2843	-0.2819	-0.2803	-0.2761	-0.2694	0.1105	0.0551	0.0003	-0.0975	-0.1932	-0.2830	-0.3693	0.1035	0.0496	0.0040	-0.0883	-0.1824	-0.2760	-0.3661
$C_{(D-F)}$	-0.2129	0.0196	-0.0366	-0.0879	-0.1470	-0.1883	0.0347	-0.0186	-0.0699	-0.1274	-0.1671	0.1044	0.0536	0.0045	-0.0500	-0.0888	0.0186	0.0189	0.0225	0.0348	0.0635	0.1041	0.1497	-0.1446	-0.1443	-0.1402	-0.1288	-0.0938	-0.0498	0.0034
C_L	0.4199	-0.0802	-0.0710	-0.0705	-0.0713	-0.0764	0.0526	0.0663	0.0792	0.0931	0.0998	0.1656	0.1874	0.2084	0.2307	0.2446	-0.0792	-0.0393	-0.0062	0.0523	0.1124	0.1650	0.2075	-0.0705	-0.0178	0.0223	0.0898	0.1622	0.2315	0.2891
NPR	4.16	0.99	2.00	3.01	4.17	5.03	0.99	2.00	3.01	4.15	4.98	86.0	2.00	3.01	4.16	4.98	0.99	0.99	0.99	0.99	0.98	0.98	0.97	4.16	4.17	4.15	4.16	4.18	4.18	4.15
α, deg	31.61	0.01	-0.05	0.03	0.01	0.01	14.98	15.00	14.99	15.01	15.01	25.02	25.00	24.97	24.96	25.00	-0.05	2.00	10.00	14.98	20.02	25.00	29.98	0.01	5.03	86.6	14.99	20.00	24.95	29.99
M	0.302	0.500	0.498	0.499	0.499	0.499	0.499	0.499	0.499	0.498	0.499	0.499	0.499	0.498	0.499	0.499	0.498	0.500	0.501	0.499	0.500	0.499	0.499	0.502	0.502	0.501	0.499	0.504	0.502	0.499

Table 30. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 15^{\circ}; \, \delta_{C,F} = 15^{\circ}\right]$

			$C_{l,a}$	0.0029	0.0024	0.0027	0.0024	0.004	0.0041	0.0030	0.0033	0.0031	0.0022	0.0024	0.0025	0.0022	0.0017	0.0044	0.0041	0.0040	0.0055	0.0024	0.0027	0.0023	0.002	0.0021	0.0031	0.0034	0.0039	0.0023
			$C_{n,a}$	-0.0005	0.0000	0.000	0000	00000	0.0005	0.0003	0.0009	0.0003	-0.0020	-0.0033	0.0029	0.0031	-0.0003	-0.0014	-0.0010	-0.0026	0.0041	0.0016	6.0034	9000	90000	0.0013	0.0001	0.0000	0.0003	-0.0045
	C_l 0.0000 0.0000 0.0000 -0.0001		$C_{Y,a}$	0.0003	-0.0023	0.00	0.0033	0.0010	-0.0014	-0.0015	-0.0039	-0.0023	0.0053	0.0089	0.0093	0.0093	0.0001	0.0052	0.0047	0.0091	0.0140	0.0032	0.0078	0.0032	-0.0012	-0.0067	-0.0013	-0.0003	-0.0014	0.0113
	C _n 0.0000 -0.0001 -0.0002		$C_{m,a}$	-0.5112	-0.5186	0.5197	-0.5175	0909:0-	-0.6052	-0.5971	-0.5907	-0.5882	-0.3875	-0.4214	0.4484	0.4802	-0.5636	-0.5862	-0.6045	-0.6646	0.7120	0.3/93	-0.4508	-0.4827	-0.5169	-0.5453	-0.5803	-0.5915	-0.6275	-0.6108
	C _{F,S} 0.0001 0.0002 0.0004 0.0004		$C_{D,a}$	0.2615	0.2676	0.26/8	0.2635	0.3898	0.3895	0.3837	0.3793	0.3762	0.1478	0.1772	90.700	0.2570	0.3150	0.3564	0.3882	0.4446	0.4862	0.1330	0.2061	0.2309	0.2630	0.3028	0.3486	0.3781	0.4217	0.4216
ristics	C _m 0.0005 0.0012 0.0024 0.0043	ensucs	$C_{L,a}$	0.2484	0.2483	0.2400	0.2423	0.1962	0.1924	0.1884	0.1849	0.1839	0.2134	0.2238	0.2427	0.2427	0.2453	0.2217	0.1936	0.1718	0.1545	0.1933	0.2202	0.2317	0.2392	0.2310	0.2171	0.1856	0.1551	0.1184
(a) Static ($M = 0$) performance characteristics	C _{F.N} -0.0002 -0.0005 -0.0010 -0.0019	iance cnaract	C_I	0.0029	0.0022	0.0023	0.0015	0.0044	0.0038	0.0026	0.0029	0.0024	0.0022	0.0024	0.0025	0.0022	0.0017	0.0044	0.0041	0.0040	0.0055	0.0018	0.0017	0.0018	0.0016	0.0017	0.0026	0.0030	0.0034	0.0017
= 0) perform	$C_{F,j}$ -0.0104 -0.0193 -0.0295 -0.0364	nsive perion	<i>C</i> "	-0.0005	-0.0005	0.001	-0.0028	0.0000	0.000	-0.0008	-0.0016	-0.0024	-0.0020	-0.0033	-0.0029	-0.0016	-0.0003	-0.0014	-0.0010	-0.0026	-0.0041	-0.0039	-0.0037	-0.0042	-0.0030	-0.0010	-0.0024	-0.0024	-0.0020	-0.0070
(a) Static (M	δ _y deg 0.56 0.51 0.80 0.70	(b) Actopiopuisive periormance characteristics	C_Y	0.0003	-0.0007	0.0023	0.0038	0.0010	0.0003	0.0012	0.0026	0.0048	0.0053	0.0089	0.0093	0.004	0.0001	0.0052	0.0047	0.0091	0.0140	0.0037	0.0082	9600.0	0.0053	-0.0002	0.0053	0.0061	0.0051	0.0179
	δ _p , deg -1.10 -1.55 -1.94 -3.05		C_{m}	-0.5112	-0.5103	-0.300	-0.4490	-0.6060	-0.5968	-0.5776	-0.5535	-0.5204	-0.3875	-0.4214	5.454 5.480 5.480	-0.5100	-0.5636	-0.5862	-0.6045	-0.6646	5424	0.3812	-0.4139	-0.4457	-0.4798	-0.5082	-0.5428	-0.5548	-0.5900	-0.5733
	FyF _i 0.9629 0.9493 0.9366 0.9188		$C_{(D-F)}$	0.2615	0.1483	0.0787	-0.1717	0.3898	0.3036	0.2232	0.1313	0.0604	0.1478	0.1//2	0.200	0.2600	0.3150	0.3564	0.3882	0.4446	0.4602	0 1919	-0.1597	-0.1258	-0.0781	9600:0-	0.0648	0.1335	0.2076	0.2341
	F_j/F_i 0.9631 0.9497 0.9202		c_L	0.2484	0.3630	0.5635	0.6333	0.1962	0.3348	0.4499	0.5826	0.6694	0.2134	0.2238	0.2322	0.2459	0.2453	0.2217	0.1936	0.1718	0.1343	0.4816	0.5064	0.5315	0.5581	0.5785	0.5946	0.5774	0.5756	0.5528
	NPR 2.00 3.00 4.17 4.99		NPR	0.98	2.00	5.00 4.14	5.00	0.98	2.00	2.99	4.15	5.00	0.99	6,0	0.99	0.98	86.0	96.0	0.98	0.97	4.16	4.15	4.16	4.15	4.15	4.15	4.15	4.15	4.15	4.15
			α, deg	44.99	45.00	44.97	44.99	59.99	60.01	90.09	59.99	60.01	35.46	30.05	42.01	45.01	49.97	55.04	60.01	65.01	35.42	37.97	39.98	41.98	45.01	49.98	55.01	59.96	64.96	68.60
			M	0.298	0.299	0.299	0.299	0.298	0.298	0.299	0.300	0.300	0.300	0.300	0.300	0.299	0.298	0.297	0.299	0.297	0.300	0.302	0.301	0.301	0.300	0.300	0.298	0.302	0.298	0.298

Table 31. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 20^{\circ}; \, \delta_{C,F} = 20^{\circ}\right]$

			$C_{l,a}$	-0.0015	-0.0018 -0.0020	-0.0023	0.0004	0.0006	0.0003	0.0004	0.0013	0.0015	0.001	0.0011	-0.0013	0.0010	0.000	90000	0.0011	0.0020	0.0020	-0.0018	-0.0017	-0.0017	0.0003	0.0009	0.0010	0.0016	0.001
			$C_{n,a}$	0.0026	0.0017	0.0013	-0.0050	0.0048	-0.0050	-0.0045	0.0001	90000	7000	-0.00 4400.0	0.0008	0.0004	0.0059	-0.0022	-0.0012	-0.0030	-0.0033	0.0005	0.0007	-0.0003	-0.0063	0.004 4.004	0.0042	0.0045	0.0010
	C ₁ 0.0000 -0.0001 -0.0001		$C_{Y,a}$	-0.0094 -0.0071	0.0060	-0.0050	0.0152	0.0149	0.0157	0.0144	0.0001	0.0022	0.0055	0.0146	-0.0017	0.0003	0.020	0.0079	0.0049	0.0111	0.0115	-0.0002	0.0009	0.0013	0.0211	0.0158	0.0146	0.0151	0.01 /4 -0.0030
	C _n 0.0000 0.0000 0.0000 0.0000		$C_{m,a}$	0.1082 0.1132	0.1205	0.1276	-0.0729	0.0713	-0.0661	-0.0633	-0.2593	-0.2508	52456	-0.2550	0.1088	0.0551	0.0023	-0.1686	-0.2573	-0.3459	-0.3726	0.1263	0.0710	0.0146	-0.0643	-0.1693	0.2449	-0.3338	0.1105
	$C_{F,S}$ 0.0000 0.0000 0.0001		$C_{D,a}$	0.0133 0.0247	0.0290	0.0364	0.0436	0.0542	0.0588	0.0616	0.1150	0.1228	0.1256	0.1284	0.0137	0.0198	0.0449	0.0748	0.1166	0.1626	0.1796	0.0350	0.0371	0.0458	0.0609	0.0919	0.1265	0.1705	0.0177
eristics	C _m 0.0017 0.0036 0.0073 0.0109	Cancila	$C_{L,a}$	-0.0789 -0.0801	0.0844 0.0853	-0.0871	0.0300	0.0289	0.0240	0.0219	0.1359	0.1255	0.1186	0.1273	-0.0791	0.0405	0.0328	0.0857	0.1335	0.1752	0.1865	-0.0892	-0.0514	-0.0192	0.0227	0.0830	0.1159	0.15/3	0.1583
(a) Static ($M = 0$) performance characteristics	δ _y , deg C _{F,j} C _{F,N} C _m -0.17 -0.0095 -0.0009 0.001 -0.12 -0.0181 -0.0018 0.005 -0.01 -0.0268 -0.0036 0.007 0.15 -0.0331 -0.0056 0.010		C_I	-0.0015 -0.0023	-0.0027	-0.0039	0.0004	0.0000	0.0010	-0.0013	0.0013	0.000	0.0003	-0.0005	-0.0013	0.0010	0.000	9000.0	0.0011	0.0020	0.0020	-0.0031	-0.0030	-0.0030	-0.0010	0.0004	0.0004	0.0003	-0.0005
f = 0) perforn	C _{F,j} -0.0095 -0.0181 -0.0268 -0.0331	wising a king	<i>C</i> ,	0.0026	0.0018	0.000	-0.0050	0.0046	-0.0051	-0.0050	0.0001	-0.0005	9.0019	0.0049	0.0008	0.0004	-0.0059	-0.0022	-0.0012	-0.0030	-0.0033	0.0003	0.0005	-0.0003	0.0064	-0.0046	-0.0043	0.0046	0.0010
(a) Static (A	δ _y , deg -0.17 -0.12 -0.01 0.15	doudorac (a)	C_{Y}	-0.0094 -0.0076	0.0066	-0.0036	0.0152	0.0144	0.0157	0.0158	0.0001	0.0017	0.0049	0.0160	-0.0017	-0.0003	0.0200	0.0079	0.0049	0.0111	0.0115	-0.0002	-0.0010	0.0012	0.0210	0.0158	0.0145	0.0150	0.001/3
	δ _p , deg -5.27 -5.57 -7.73 -9.58		C,,,	0.1082 0.1409	0.1775	0.3002	-0.0729	0.0428	0.0509	0.1101	-0.2593	-0.2225	0.1869	-0.0784	0.1088	0.0551	0.0023	-0.1686	-0.2573	-0.3459	-0.3726	0.2447	0.1861	0.1297	0.0524	-0.0509	-0.1274	-0.2202	0.1105
	F _J F _i 0.9043 0.8915 0.8617 0.8402		$C_{(D-F)}$	0.0133	0.2548	-0.4845	0.0436	-0.0993	-0.3675	-0.4659	0.1150	-0.0239	0.1512	-0.3926	0.0137	0.0198	0.0290	0.0748	0.1166	0.1626	0.1796	-0.3962	-0.3903	-0.3819	-0.3692	-0.3378	-0.2898	-0.2262	0.0177
	F _J /F _i 0.9082 0.8957 0.8696 0.8520		C_{L}	-0.0789 -0.0941	-0.1122	-0.1753	0.0300	0.0551	0.0775	0.0716	0.1359	0.1781	0.2162	0.2710	-0.0791	0.0405	0.0328	0.0857	0.1335	0.1752	0.1865	-0.1485	-0.0717	-0.0022	0.0776	0.1762	0.2454	0.3192	0.3431
	NPR 1.99 3.01 4.15 5.00		NPR	1.00	3.01	5.02	1.00	2.03	4.19	5.02	0.99	2.00	3.02	5.02	1.00	8:0	3 8	0.99	0.99	0.99	0.99	4.19	4.15	4.15	4.15	4.15	4.16	4.16	4.16 0.99
			α, deg	0.01	0.05	0.01	14.99	15.00	14.98	15.01	25.00	25.00	24.99	25.04	0.01	200	15.01	19.99	24.99	29.99	31.59	0.01	4.99	6.66	15.00	19.98	25.02	29.95	31.66 0.01
			M	0.301	0.301	0.302	0.302	0.301	0.302	0.302	0.303	0.298	0.298	0.299	0.301	0.302	0.301	0.299	0.299	0.303	0.302	0.300	0.301	0.300	0.299	0.297	0.298	0.301	0.500

Table 31. Concluded

$C_{l,a}$	0000	90000	8000	0.0010	0.000	0.000	0.0005	90000	0.0006	0.0010	0.0010	0.0010	0.0010	0.0010	-0.0008	90000	-0.0007	0.0008	0.0010	0.0010	0.0013	-0.0010	-0.0008	-0.0010	0.0007	0.000	0.0011	0.0016
$C_{n,a}$	0.0010	0.0010	0.0010	0.0010	-0.0024	-0.0030	-0.0031	-0.0034	-0.0037	-0.0003	-0.0003	-0.0003	-0.0002	40000	0.0015	0.0013	0.0004	-0.0017	-0.0003	0.0001	-0.0032	0.0011	0.0012	0.0005	-0.0030	90000	0.0001	-0.0024
$C_{Y,a}$	0.0030	-0.0028	0.0030	-0.0030	0.0076	0.0091	0.0095	0.0105	0.0110	0.0013	0.0011	0.0004	0.0001	0.0010	-0.0049	-0.0044	-0.0015	0.0050	0.0013	-0.0005	0.0099	-0.0039	-0.0042	-0.0022	0.0085	0.0015	-0.0011	0.0068
$C_{m,a}$	0.1093	0.1134	0.1189	0.1244	-0.1001	-0.0942	-0.0923	-0.0894	-0.0915	-0.2839	-0.2784	-0.2762	-0.2724	-0.2688	0.1108	0.0548	0.0002	-0.0994	-0.1920	-0.2827	-0.3678	0.1169	0.0615	0.0063	-0.0882	-0.1798	-0.2731	-0.3620
$C_{D,a}$	0.0223	0.0251	0.0275	0.0277	0.0349	0.0376	0.0389	0.0403	0.0409	0.1032	0.1043	0.1051	0.1044	0.1036	0.0176	0.0179	0.0218	0.0339	0.0615	0.1023	0.1475	0.0278	0.0265	0.0305	0.0401	0.0657	0.1055	0.1493
$C_{L,a}$	-0.0777	-0.0804	-0.0845	-0.0880	0.0545	0.0498	0.0477	0.0452	0.0477	0.1654	0.1599	0.1560	0.1522	0.1494	-0.0800	-0.0388	-0.0060	0.0538	0.1116	0.1651	0.2063	-0.0828	-0.0437	-0.0118	0.0432	0.0993	0.1532	0.1972
c_l	-0.0008	-0.0010	-0.0013	-0.0016	0.0000	0.0004	0.0002	0.0001	0.0000	0.0010	0.0008	0.0007	0.0004	0.0003	-0.0008	9000'0-	-0.0007	0.0008	0.0010	0.0010	0.0013	-0.0014	-0.0013	-0.0014	0.0003	0.0003	90000	0.0010
<i>C</i> ,	0.0010	0.0010	0.0010	0.0000	-0.0024	-0.0029	-0.0030	-0.0035	-0.0038	-0.0003	-0.0003	-0.0002	-0.0003	-0.0006	0.0015	0.0013	0.0004	-0.0017	-0.0003	0.0001	-0.0032	0.0011	0.0011	0.0004	-0.0030	-0.0007	0.0001	-0.0025
C_{γ}	-0.0031	-0.0030	-0.0030	-0.0026	0.0076	0.0089	0.0093	0.0104	0.0114	0.0013	0.0009	0.0002	0.0001	0.0015	-0.0049	-0.0044	-0.0015	0.0050	0.0013	-0.0005	0.0099	-0.0039	-0.0042	-0.0023	0.0084	0.0015	-0.0011	0.0068
<i>C</i> ,	0.1195	0.1343	0.1612	0.1871	-0.1001	-0.0839	-0.0716	-0.0470	-0.0287	-0.2839	-0.2682	-0.2555	-0.2307	-0.2062	0.1108	0.0548	0.0002	-0.0994	-0.1920	-0.2827	-0.3678	0.1591	0.1034	0.0486	-0.0457	-0.1377	-0.2305	-0.3197
$C_{(D-F)}$	-0.0335	-0.0790	-0.1275	-0.1623	0.0349	-0.0177	-0.0631	-0.1149	-0.1511	0.1032	0.0514	0.0073	0.0439	-0.0817	0.0176	0.0179	0.0218	0.0339	0.0615	0.1023	0.1475	-0.1261	-0.1276	-0.1251	-0.1157	-0.0861	-0.0447	0.0044
C_L	-0.0828	-0.0905	-0.1057	-0.1201	0.0545	0.0592	0.0646	0.0649	0.0659	0.1654	0.1788	0.1906	0.1983	0.2004	-0.0800	-0.0388	0900.0	0.0538	0.1116	0.1651	0.2063	-0.1038	-0.0513	-0.0058	0.0629	0.1321	0.1998	0.2563
NPR	2.01	3.00	4.17	4.99	0.99	2.02	3.00	4.18	2.00	0.97	2.02	3.01	4.15	2.00	0.99	0.99	0.99	0.99	0.98	0.97	96.0	4.18	4.18	4.18	4.17	4.17	4.17	4.17
α, deg	0.01	0.01	-0.02	-0.01	15.02	14.97	14.99	15.00	14.99	25.02	24.99	25.00	24.98	24.99	0.01	2.00	10.00	15.00	20.00	24.99	30.00	0.05	4.97	10.01	14.99	19.99	25.01	29.97
W	0.499	0.497	0.499	0.499	0.498	0.500	0.500	0.499	0.499	0.498	0.499	0.499	0.499	0.500	0.502	0.502	0.501	0.499	0.499	0.500	0.498	0.501	0.503	0.500	0.498	0.500	0.497	0.499

Table 32. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B} = 25^{\circ}; \, \delta_{E} = 20^{\circ}; \, \delta_{C} = 20^{\circ}; \, \delta_{F} = 25^{\circ}\right]$

		$C_{l,a}$	60000 400000 40000	-0.0012	0.0013	0.0015	0.0014	0.0010	0.0022	0.0020	0.0021	0.0020	0.0025	0.0024	0.0019	0.0045	0.0038	0.0031	0.0031	0.0003	0.000	0.0017	0.0017	0.0021
		$C_{n,a}$	0.0026 0.0024 0.0022	0.0024	0.0020	0.0044	-0.00 43	-0.0024	0.0011	-0.0001	-0.0022	-0.007	-0.0006	0.0013	-0.0027	-0.0002	5000 0000 0000	-0.0016	-0.0024	0.0017	0.0010	-0.0053	-0.0007	0.0002
	C_l 0.0000 -0.0001 -0.0001	$C_{Y,a}$	-0.0098 -0.0095 -0.0087	-0.0088	0.0117	0.0127	0.0094	0.0066	0.0051	90000	0.0063	0.0012	0.0003	0.0024	0.0065	0.0018	0.0016	0.0051	0.0074	-0.0062	1400.0	0.0166	0.0016	0.0036
	C _n 0.0000 0.0000 0.0000	C _{m,a}	0.1013 0.1095 0.1181	0.1275	0.1311	-0.0745	-0.0604 -0.0604	-0.0580	-0.2605	-0.2516	-0.2586	-0.2037	-0.5193	0.5183	-0.5153	-0.6033	7.090 10.6066	-0.6008	-0.6008	0.1044	0.0500	-0.0778	-0.1725	-0.2628 -0.3510
	$C_{F,S}$ 0.0000 -0.0001 0.0000 0.0000	$C_{D,a}$	0.0173 0.0288 0.0302	0.0327	0.0381	0.0585	0.0575	0.0622	0.1194	0.1256	0.1304	0.2562	0.2628	0.2610	0.2557	0.3852	0.3828	0.3769	0.3728	0.0168	0.0236	0.0486	0.0771	0.1204
ristics	C _m 0.0027 0.0057 0.0106 0.0145	$C_{L,a}$	-0.0711 -0.0755 -0.0814	-0.0867	0.0337	0.0315	0.0203	0.0178	0.1363	0.1257	0.1325	0.2510	0.2517	0.2489	0.2459	0.2003	0.1968	0.1971	0.1989	-0.0733	0.0352	0.0353	0.0895	0.1381 0.1777
(a) Static ($M = 0$) performance characteristics	δ_{y} , deg C_{Fj} $C_{F,N}$ C_{m} -0.21 -0.0090 -0.0014 0.005 -0.27 -0.0166 -0.0029 0.005 -0.10 -0.0247 -0.0054 0.016 0.02 -0.0307 -0.0074 0.016	C_l	-0.0004 -0.0014 -0.0021	-0.0029	0.0013	0.0010	0.0003	-0.0012	0.0022	0.0010	0.0003	0.0029	0.0020	0.0013	-0.0002	0.0045	0.0033	0.0014	0.0010	-0.0003	0.00	0.0017	0.0017	0.0021 0.0030
= 0) perform	С _{F j} -0.0090 -0.0166 -0.0247 -0.0307 alsive perform	<i>C</i> "	0.0026 0.0025 0.0023	0.0020	0.0014 -0.0042	-0.0043	-0.0042 -0.0034	-0.0030	0.0011	-0.0012 -0.0001	-0.0025	-0.0024	-0.0005	-0.0012	-0.0033	-0.0002	6,0003 6,0006	-0.0019	-0.0030	0.0017	0.0010	0.0010	-0.0007	0.0002 -0.0013
(a) Static (M	δ _y , deg -0.21 -0.27 -0.10 0.02 (b) Aeropropi	C_{Y}	-0.0098 -0.0100 -0.0099	-0.0094	0.0117	0.0122	0.00116	0.0068	-0.0051	-0.0018	0.0057	0.0033	-0.0001	0.0012	9900.0	0.0018	0.0012	0.0045	0.0076	-0.0062	0.004	0.0166	0.0016	-0.0013 0.0036
	δ _p , deg -8.78 -9.76 -12.38 -13.64	<i>C</i> [#]	0.1013 0.1533 0.2080	0.2917	0.3594	-0.0305	0.1052	0.1722	-0.2605	0.1609	-0.0910	-0.0349	-0.4766	-0.4290	-0.2882	-0.6033	-0.5588 -0.5154	-0.4322	-0.3701	0.1044	0.0300	-0.0778	-0.1725	-0.2628 -0.3510
	F _f F _i 0.8400 0.8181 0.7885 0.7734	$C_{(D-F)}$	0.0173 -0.1146 -0.2318	-0.3532	0.0500	-0.0864	-0.20% -0.3404	-0.4383	0.1194	-0.1330	-0.2616	0.2562	0.1482	0.0450	-0.1669	0.3852	0.2934	0.1047	0.0265	0.0168	0.0235	0.0486	0.0771	0.1204
	F,/F _i 0.8500 0.8301 0.8073 0.7959	C_L	-0.0711 -0.0977 -0.1264	-0.1710	0.0337	0.0472	0.050/	0.0297	0.1363	0.1961	0.2203	0.2510	0.3357	0.4016	0.5033	0.2003	0.3081	0.4954	0.5619	-0.0733	0.0352	0.0353	0.0895	0.1381
	NPR 2.00 3.00 4.16 5.00	NPR	1.00 3.00	4.13	 1.08	2.01	5.01 4.13	2.00	0.98 5.50	3.00	4.15	0.98 8.98	1.99	2.99	4.98	0.98	3.05 20.05	4.16	2.00	99:	3 5	3.8.	1.00	0.99
		α, deg	0.03	0.02	0.02 15.01	15.00	15.00	15.01	24.98	25.01	25.01	45.00	45.02	45.00	£ 4.97	59.98	60.01 59.99	60.02	59.99	0.01	00°C	7.70 14.99	19.98	25.02 29.99
		M	0.302	0.301	0.301	0.300	0.300	0.300	0.299	0.300	0.300	0.301	0.301	0.301	0.301	0.300	0.300	0.300	0.300	0.299	0.292	0.300	0.303	0.302

$C_{l,a}$	0.0034	0.0023	0.0025	0.0020	0.0030	0.0023	0.0018	0.0040	0.0040	0.0037	0.0053	-0.0008	-0.0006	-0.0006	0.0012	0.0016	0.0021	0.0025	0.0023	0.0020	0.0025	0.0015	0.0021	0.0019	0.0015	0.0028	0.0031	0.0037	0.0028	-0.0004	-0.0005	-0.0006	-0.0008	0.0012	0.0010	0.0010	0.0010	0.0010	0.0011	0.0013	0.0014	0.0014	0.0015	0.0013	-0.0004
$C_{n,a}$	-00021	-0.0024	-0.0037	-0.0025	-0.0041	-0.0018	-0.0004	-0.0014	-0.0008	-0.0024	-0.0043	0.0014	0.0010	0.0004	-0.0053	-0.0026	-0.0030	-0.0039	-0.0040	-0.0040	-0.0066	-0.0035	-0.004	-0.0035	-0.0004	-0.0018	-0.0020	-0.0018	-0.0036	0.0010	0.0011	0.0012	0.0014	0.0020	-0.0024	0.0028	-0.0027	-0.0028	-0.0030	0.0003	9000:0	9000.0	0.0006	0.0004	0.0017
$C_{Y,a}$	09000	0.0073	0.0104	0.0077	0.0132	0.0052	0.0010	0.0057	0.0041	0.0000	0.0152	-0.0044	-0.0029	-0.0014	0.0172	0.0084	0.0097	0.0124	0.0122	0.0126	0.0199	0.0095	0.0127	0.0098	-0.0002	0.0063	0.0065	0.0065	0.0109	-0.0035	-0.0036	-0.0041	0.0044	0.0057	0.00/3	0.0081	0.0081	0.0081	0.0089	-0.0016	-0.0026	-0.0028	-0.0028	-0.0024	-0.0064
$C_{m,a}$	-0.3784	-0.3866	-0.4223	-0.4483	-0.4821	-0.5110	-0.5625	-0.5863	-0.6041	-0.6603	-0.7093	0.1268	0.0700	0.0148	-0.0639	-0.1662	-0.2539	-0.3375	-0.3703	-0.3796	-0.4168	-0.4488	-0.4781	-0.5130	-0.5518	-0.5832	-0.5984	-0.6387	-0.6280	0.1119	0.1099	0.1142	0.1268	-0.0993	-0.0941	7.0917	7160.0	-0.0907	-0.0910	-0.2849	-0.2818	-0.2781	-0.2731	-0.2707	0.1087
$C_{D,a}$	0.1861	0.1423	0.1732	0.1966	0.2243	0.2562	0.3104	0.3524	0.3846	0.4389	0.4828	0.0357	0.0390	0.0470	0.0615	0.0881	0.1283	0.1709	0.1929	0.1465	0.1743	0.1992	0.2220	0.2549	0.3002	0.3429	0.3741	0.4190	0.4237	0.0195	0.0237	0.0259	0.0271	0.0351	0.0383	0.0386	0.0385	0.0380	0.0400	0.1037	0.1054	0.1051	0.1044	0.1035	0.0184
$C_{L,a}$	0.1899	0.2147	0.2272	0.2347	0.2467	0.2499	0.2491	0.2270	0.1987	0.1774	0.1578	-0.0862	-0.0477	-0.0164	0.0251	0.0842	0.1274	0.1608	0.1735	0.1997	0.2129	0.2222	0.2329	0.2418	0.2387	0.2255	0.1956	0.1692	0.1359	-0.0798	-0.0781	-0.0810	-0.0899	0.0533	0.0491	0.0470	0.0471	0.0467	0.0476	0.1664	0.1625	0.1584	0.1542	0.1519	-0.0773
C_{l}	0.0034	0.0023	0.0025	0.0020	0.0030	0.0023	0.0018	0.0040	0.0040	0.0037	0.0053	-0.0024	-0.0023	-0.0023	-0.0004	-0.0001	0.0003	0.0008	0.0005	0.0003	0.0008	-0.0003	0.0003	0.0002	-0.0003	0.0010	0.0014	0.0021	0.0010	-0.0004	-0.0008	0.0010	0.0016	0.0012	0.000	0.0006	0.000	0.0004	0.0003	0.0013	0.0011	0.0010	0.0000	0.0005	-0.004
<i>C</i> "	-0.0021	-0.0024	-0.0037	-0.0025	-0.0041	-0.0018	-0.0004	-0.0014	-0.0008	-0.0024	-0.0043	0.0010	9000:0	0.0001	-0.0057	-0.0029	-0.0034	-0.0043	-0.0044	-0.0044	-0.0070	-0.0038	-0.0048	-0.0038	-0.0008	-0.0022	-0.0024	-0.0022	-0.0039	0.0010	0.0011	0.0012	0.0012	-0.0020	0.0024	0.0027	0.0027	0.0030	-0.0032	0.0003	9000.0	90000	0.0005	0.0003	0.0017
C_Y	09000	0.0073	0.0104	0.0077	0.0132	0.0052	0.0010	0.0057	0.0041	0.0000	0.0152	-0.0051	-0.0035	-0.0020	0.0166	0.0078	0.0000	0.0118	0.0115	0.0120	0.0192	0.0089	0.0121	0.0091	-0.0009	0.0056	0.0058	0.0058	0.0102	-0.0035	-0.0038	-0.0045	-0.0044	0.0037	0.007	0.0076	0.0070	0.00	0.0089	-0.0016	-0.0028	-0.0032	-0.0030	-0.0023	-0.UG
<i>C</i> _m	-0.3784	-0.3866	-0.4223	-0.4483	-0.4821	-0.5110	-0.5625	-0.5863	-0.6041	-0.6603	-0.7093	0.2949	0.2370	0.1810	0.1036	-0.0016	-0.0870	-0.1686	-0.2004	-0.2115	-0.2490	-0.2804	-0.3094	-0.3443	-0.3818	-0.4145	-0.4309	-0.4692	-0.4592	0.1119	0.1264	0.1462	0.2087	0.0993	0.0778	0.0396	0.0390	0.0310	-0.0087	-0.2849	-0.2654	-0.2456	-0.2127	-0.1881	0.108/
$C_{(D-F)}$	0.1861	0.1423	0.1732	0.1966	0.2243	0.2562	0.3104	0.3524	0.3846	0.4389	0.4828	-0.3583	-0.3585	-0.3523	-0.3399	-0.3038	-0.2627	-0.2161	-0.1914	-0.2236	-0.1883	-0.1577	-0.1296	-0.0859	-0.0228	0.0455	0.1035	0.1722	0.1997	0.0195	-0.0296	0.06/6	0.146/	0.0331	0.0130	0.055	0.0501	0.1033	0.1395	0.1037	0.0536	0.0122	-0.0370	-0.0729	0.0184
C_L	0.1899	0.2147	0.2272	0.2347	0.2467	0.2499	0.2491	0.2270	0.1987	0.1774	0.1578	-0.1726	-0.0989	-0.0325	0.0433	0.1369	0.2152	0.2840	0.3090	0.3583	0.3869	0.4103	0.4326	0.4599	0.4875	0.4993	0.4920	0.4922	0.4725	-0.0798	-0.0864 4.0864	0.09/1	0.1318	0.0333	0.0556	0.0000	0.0533	0.033	0.0319	0.1664	0.1775	0.1837	0.1858	0.1874	-0.0773
NPR	0.99	0.99	0.99	0.99	0.98	0.98	0.98	0.98	0.98	0.97	0.97	4.15	4.14	4.13	4.15	4.13	4.14	4.13	4.15	4.16	4.15	4.16	4.16	4.15	4.15	4.16	4.15	4.16	4.16	0.99	2. 6 4. 6	16.7	C. 60 00 00	2.03	20.0	7000	7.7	1.1	8, 5 8, 5	0.97	45.04	2.99	4.IS	86.4	0.99
α, deg	31.63	35.46	38.02	40.00	42.01	45.00	50.01	55.02	00.09	65.03	68.57	0.00	5.03	10.02	14.97	20.00	25.01	30.00	31.80	35.58	38.01	40.18	41.98	4.9	49.98	55.02	00.09	65.00	68.76	0.03	0.03	0.07	10.01	15.01	15.00	15.00	15.00	3.5	14.98	24.98	25.01	25.00	24.97	24.98	0.01
M	0.298	0.297	0.300	0.300	0.300	0.300	0.299	0.297	0.300	0.300	0.298	0.299	0.300	0.300	0.300	0.301	0.300	0.297	0.298	0.300	0.300	0.300	0.299	0.299	0.298	0.299	0.300	0.298	0.299	0.500	0.500	0.500	0.500	0.459	0.50	0.500	0.500	0000	0.300	0.499	0.499	0.499	0.499	0.499	0.301

C_{l,a}-0.0003
-0.0003
-0.0003
-0.0013
-0.0017
-0.0005
-0.0005
-0.0006
-0.0001 *C_{n,a}*0.0014
0.0004
0.0007
0.0007
0.0008
0.00014
0.0015
0.00015
0.00016
0.00017
0.00017 C_{Y,a}
0.0053
0.0053
0.0030
0.0042
0.0044
0.0044
0.0030
0.00046
0.0030 Cm.a 0.0534 0.0009 0.0009 0.1208 0.0632 0.0632 0.0632 0.0633 0.0723 0.0723 C_{D,a}
0.0184
0.0228
0.0324
0.0334
0.1037
0.1494
0.0259
0.0259
0.0382
0.0382
0.1042 $C_{L,a}$ C_{L C₁
-0.0002
-0.0003
-0.0003
-0.0013
-0.0014
-0.0017
-0.0012
-0.0005
-0.0005
-0.0005
-0.0005 C_n 0.0014
0.0007
0.0007
0.0007
0.0008
0.0008
0.0017
0.0016
0.0016
0.0016
0.0017
0.0010 C_Y
-0.0053
-0.0030
-0.0030
-0.0042
-0.0044
-0.0056
-0.0064
-0.0064
-0.0064
-0.0064
-0.0064
-0.0068 C_m 0.0534 0.0009 0.1007 0.1943 0.2843 0.1836 0.0690 0.0690 0.1183 0.1183 0.0183 $C_{(D-F)}$ 0.0184 0.00184 0.00184 0.00248 0.00248 0.00346 0.1037 0.1146 0.1146 0.1166 0.00778 0.00363 0.00126 C_L C_L x, deg 5.02 5.02 9.97 9.97 9.97 9.99 9.97 9.99 9.97 9.99 9.97 9.99 M 0.503 0.502 0.500 0.501 0.498 0.501 0.501 0.503 0.503 0.503 0.503 0.503 0.503 0.503

88

Table 33. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 15^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

							ن	0,1,a	-0.000 4	0.0003	0.0012	0.00	0.001	0.0012	0.0010	0.0007	0.0008	0.0019	0.0018	0.0017	0.0017	0.0016	0.0032	0.0024	0.0025	0.0023	0.0024	0.0041	0.0039	0.0030	0.0031	0.0030	90000	-0.0003	-0.0002	0.0011	0.0013	0.0017	0.0027
							ر	v.n.a	0.0039	0.0046	0.0053	0.0001	-0.0032	-0.0032	-0.0028	-0.0008	-0.0010	0.0018	0.0027	0.0037	0.0044	0.0030	0.0005	0.0014	0.0017	0.0030	0.0028	0.0006	0.0026	0.0031	0.0050	0.0053	0.0032	0.0027	0.0024	-0.0034	0.0001	0.0012	-0.0007
	Ċ	00000	0.0000	0.0000	0.0000		ڻ	p, 1 .	-0.0143	701070	0.01/8	-0.0193	0.0085	0.0095	0.0086	0.0020	0.0025	-0.0076	-0.0095	-0.0124	-0.0141	-0.0105	-0.0021	-0.0048	-0.0054	-0.0100	-0.0098	0.0003	-0.0054	-0.0079	-0.0129	-0.0143	-0.0120	-0.0098	-0.0089	0.0098	-0.0012	-0.0049	0.0015
	ڻ	0.0001	0.0002	0.0003	0.0007		ان	B, E	0.1011	0.0972	0.1019	0.0995	-0.0812	-0.0805	-0.0788	-0.0775	-0.0805	-0.2654	-0.2639	-0.2632	-0.2595	-0.2614	-0.5166	-0.5329	-0.5332	-0.5340	-0.5335	-0.6092	-0.6110	-0.6146	-0.6116	-0.6108	0.1010	0.0465	-0.0056	-0.0810	-0.1763	-0.2667	-0.3537
	$C_{F,S}$	-0.0001	-0.0001	-0.0003	-0.0010		S	n'A -	0.0147	0.0280	0.0280	0.0319	0.0460	0.0584	0.0580	0.0614	0.0657	0.1184	0.1289	0.1274	0.1286	0.1340	0.2651	0.2754	0.2741	0.2732	0.2724	0.3926	0.3925	0.3933	0.3920	0.3908	0.0127	0.0200	0.0309	0.0464	0.0765	0.1221	0.1676
teristics	C,	0.0003	9000.0	0.0012	0.0024	teristics	Č,	E.G	0.0706	0.0649	-0.0674	-0.0636	0.0395	0.0376	0.0366	0.0344	0.0358	0.1416	0.1366	0.1358	0.1321	0.1312	0.2508	0.2557	0.2531	0.2503	0.2488	0.1938	0.1954	0.1975	0.1942	0.1941	-0.0700	-0.0308	0.0000	0.0402	0.0944	0.1423	0.1824
(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	-0.0002	-0.0003	-0.0005	-0.0011	(b) Aeropropulsive performance characteristics	Ċ	, ,	4500.0	0.0010	-0.0013	-0.0012	0.0011	0.0010	0.0010	9000.0	0.0009	0.0019	0.0017	0.0017	0.0017	0.0017	0.0032	0.0022	0.0024	0.0023	0.0025	0.0041	0.0037	0.0029	0.0031	0.0031	-0.0006	-0.0003	-0.0002	0.0011	0.0013	0.0017	0.0027
<i>d</i> = 0) perforr	$C_{F,j}$	-0.0104	-0.0196	-0.0300	-0.0375	oulsive perfor	ڻ		0.0039	0.0037	0.0108	0.0164	-0.0032	-0.0022	-0.0005	0.0040	0.0101	0.0018	0.0037	0.0059	0.0092	0.0139	0.0005	0.0024	0.0038	0.0078	0.0137	0.0006	0.0037	0.0054	0.0098	0.0164	0.0032	0.0027	0.0024	-0.0034	0.0001	0.0012	-0.0007
(a) Static (A	δ_y , deg	-0.28	-0.35	-0.58	-1.48	(b) Aeroprop	C_{V}		0.0143	-0.01/0	-0.0248	-0.0339	0.0085	0.0087	9900.0	-0.0028	-0.0129	-0.0076	-0.0103	-0.0143	-0.0189	-0.0257	-0.0021	-0.0056	-0.0073	-0.0146	-0.0250	0.0003	-0.0062	-0.0098	-0.0177	-0.0298	-0.0120	-0.0098	-0.0089	0.0098	-0.0012	-0.0049	0.0015
	δ_p , deg	98.0-	-0.75	-1.00	-1.74		ر.		0.1011	0.1024	0.1198	0.1356	-0.0812	-0.0752	-0.0687	-0.0580	-0.0430	-0.2654	-0.2588	-0.2532	-0.2399	-0.2243	-0.5166	-0.5278	-0.5234	-0.5150	-0.4967	-0.6092	-0.6058	-0.6046	-0.5921	-0.5732	0.1010	0.0465	-0.0056	-0.0810	-0.1763	-0.2667	-0.3537
	$F_{f}F_{i}$	0.9711	0.9643	0.9546	0.9425		C_{D-E}	77.00	0.0147	-0.2796	-0.4387	-0.5550	0.0460	-0.1051	-0.2446	-0.4012	-0.5158	0.1184	-0.0211	-0.1540	-0.3112	-0.4105	0.2651	0.1587	0.0548	-0.0635	-0.1532	0.3926	0.3086	0.2352	0.1455	0.0759	0.0127	0.0200	0.0309	0.0464	0.0765	0.1221	0.1676
	$F_{J}F_{i}$	0.9712	0.9644	0.9548	0.9432		<u>ر</u>	20200	0.0700	-0.0721	-0.0739	-0.0815	0.0395	0.0787	0.1131	0.1495	0.1724	0.1416	0.2037	0.2622	0.3276	0.3648	0.2508	0.3690	0.4665	0.5/50	0.6488	0.1938	0.3358	0.4631	0.6041	0.7025	-0.0700	-0.0308	0.0000	0.0402	0.0944	0.1423	0.1824
	NPR	1.99	3.00	4.16	9.2		NPR	8	3.5	300	4.13	4.95	1.00	2.01	3.00	4.14	5.01	0.99	2.00	3.00	4.14	5.00	0.98	86. E	3.00	4.13	2.02	76.0	 86. 6	2.98	4.15	5.01	9.	1.00	1.00	1.00	1.00	0.99	0.99
							α, deg	20.0		-0.07	-0.05	-0.05	14.94	14.96	14.94	14.97	14.96	24.97	24.95	24.93	24.96	24.95	45.02	45.00	14.97	3.5	86.58	00.00	59.98	59.99	59.97	59.97	-0.03	4.97	9.95	14.96	19.94	24.98	29.97
							M	0.301	0.301	0.302	0.301	0.300	0.299	0.299	0.299	0.299	0.300	0.300	0.301	0.301	0.298	0.300	0.303	0.301	0.302	0.302	0.303	0.300	0.299	0.299	0.299	0.300	0.300	0.300	0.301	0.300	0.301	0.298	0.300

Table 33. Continued

C _{1,a} 0.0025 0.0023 0.0023 0.0023 0.0023 0.0023 0.0024 0.0013 0.0024 0.0024 0.0024 0.0025 0.0025 0.0026 0.0027	0.0010 -0.0005
C _{n,a} -0.0006 -0.0009 -0.0003 -0.0012 -0.0013 -0.0013 -0.0014 -0.0013 -0.0014 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017 -0.0017	0.0027 0.0027 0.0024
C _{Ka} 0.0003 0.0027 0.0069 0.0089 0.0089 0.00172 0.00172 0.00173 0.00173 0.00174 0.00174 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065 0.0065	-0.0076 -0.0076 -0.0077
C _{m,a} 0.3825 0.3825 0.4258 0.4258 0.4546 0.45690 0.5690 0.5690 0.5690 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.0996 0.09999 0.0999 0.09	-0.2854 -0.2854 0.1085
C _{Da} 0.1866 0.1504 0.2063 0.2043 0.2341 0.2443 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0354 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0356 0.0367 0.0367 0.0367 0.0369 0.0369 0.0369 0.0369 0.0369 0.0378	0.1107 0.1107 0.0180
0.1945 0.2128 0.2128 0.2237 0.2339 0.2452 0.2484 0.2484 0.2484 0.0246 0.0351 0.0356 0.	0.1620 0.1604 -0.0777
C ₁ 0.0025 0.0025 0.0023 0.0028 0.0028 0.0039 0.0041 0.0024 0.0042 0.0024 0.0024 0.0025 0.0025 0.0026 0.0027 0.0029	0.0010 0.0010 -0.0005
C _n -0.0006 -0.0009 -0.0024 -0.0025 -0.0016 -0.0010 -0.0010 -0.0003 -0.0010 -0.0010 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010 -0.0024 -0.0010	0.004 <i>3</i> 0.0066 0.0024
C_{Y} 0.0003 0.0027 0.0069 0.0069 0.0069 0.0015 0.0017 0.00183 0.00183 0.00184 0.00185 0.00187 0.00048	-0.0089 -0.0131 -0.0077
C _m -0.3825 -0.3833 -0.4258 -0.4883 -0.4546 -0.4883 -0.5690 -0.5690 -0.5690 -0.5690 -0.5690 -0.5690 -0.6092 -0.6092 -0.6092 -0.6093 -0.1099 -0.1099 -0.1099 -0.1099 -0.1099	-0.2798 -0.2720 0.1085
$C_{(D-F)}$ 0.1866 0.1504 0.1839 0.2063 0.2048 0.3195 0.3596 0.3938 0.4500 0.4943 0.4149 0.01639 0.0359 0.0359 0.0359 0.0359 0.01058 0.00532 0.00532	-0.0470 -0.0864 0.0180
C_L 0.1945 0.2128 0.2237 0.2339 0.2484 0.2484 0.2484 0.2488 0.2243 0.1927 0.1728 0.0734 0.0734 0.0734 0.0734 0.0738 0.0734 0.0738 0.0734 0.0738 0.0734 0.0738 0.0734 0.0738	0.2318 0.2448 -0.0777
NPR 0.098 0.09	5.00 0.99
α, deg 33.165 33.1155 38.04 40.02 40.02 55.09 56.99 66.49 86.49 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 66.40 6	24.93 24.93 -0.04
0.298 0.298 0.298 0.298 0.298 0.300 0.300 0.300 0.300 0.300 0.299	0.500 0.499 0.499

	$C_{l,a}$	-0 0003	-0.0005	0.0011	0.0010	0.0011	0.0014	60000	-0.0005	-0.0005	0.0010	0.0011	0.0012	0.0017
	$C_{n,a}$	0.0023	0.0013	-0.0012	0.0006	0.0010	-0.0021	0.0032	0.0034	0.0026	0.000	0.0025	0.0034	0.0005
	$C_{Y,a}$	-0.0073	-0.0043	0.0031	-0.0019	-0.0032	9900.0	-0.0099	-0.0102	-0.0079	0.0003	-0.0070	-0.0103	-0.0010
	$C_{m,a}$	0.0523	-0.0023	-0.1021	-0.1951	-0.2880	-0.3731	0.1044	0.0485	-0.0028	-0.0977	-0.1922	-0.2876	-0.3775
	$C_{D,a}$	0.0186	0.0226	0.0347	0.0633	0.1049	0.1506	0.0260	0.0270	0.0294	0.0405	0.0687	0.1099	0.1557
	$C_{L,a}$	-0.0370	-0.0043	0.0562	0.1144	0.1689	0.2104	-0.0725	-0.0336	-0.0045	0.0517	0.1098	0.1652	0.2091
ncluded	C_{l}	-0.0003	-0.0005	0.0011	0.0010	0.0011	0.0014	-0.0009	-0.0005	-0.0006	0.0010	0.0011	0.0012	0.0017
Table 33. Concluded	<i>C</i> ,	0.0023	0.0013	-0.0012	9000.0	0.0010	-0.0021	0.0050	0.0051	0.0044	0.0018	0.0043	0.0051	0.0023
	C_{Y}	-0.0073	-0.0043	0.0031	-0.0019	-0.0032	9900.0	-0.0116	-0.0119	-0.0097	-0.0015	-0.0088	-0.0120	-0.0028
	C _m	0.0523	-0.0023	-0.1021	-0.1951	-0.2880	-0.3731	0.1114	0.0555	0.0041	-0.0907	-0.1852	-0.2805	-0.3704
	$C_{(D-F)}$	0.0186	0.0226	0.0347	0.0633	0.1049	0.1506	-0.1451	-0.1440	-0.1392	-0.1270	-0.0934	-0.0475	0.0047
	C_L	-0.0370	-0.0043	0.0562	0.1144	0.1689	0.2104	-0.0756	-0.0218	0.0221	0.0933	0.1655	0.2351	0.2925
	NPR	0.99	0.99	0.99	0.98	0.97	96.0	4.15	4.16	4.15	4.15	4.16	4.16	4.17
	α, deg	4.98	6.67	14.94	19.94	24.96	29.95	-0.05	4.98	86.6	14.94	19.97	24.96	29.94
	M	0.500	0.500	0.501	0.500	0.498	0.498	0.500	0.501	0.501	0.498	0.500	0.500	0.500

Table 34. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 25^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

						$C_{l,a}$	-0.0001	-0.0007	-0.0011	-0.0014	-0.0017	0.0015	0.0011	0.0007	0.0005	0.0003	0.0020	0.0017	0.0017	0.0017	0.0017	0.0030	0.0023	0.0020	0.0029	0.0023	0.0044	0.0038	0.0031	0.0031	0.0033	-0.000 4	-0.0003	-0.0001	0.0013	0.0015	0.0019	0.0028
						$C_{n,a}$	0.0030	0.0058	0.0086	0.0117	0.0122	-0.0038	-0.0018	0.0011	0.0040	0.0050	0.0007	0.0034	0.0050	0.0073	0.0079	0.0005	0.0018	0.0020	0.0013	0.0026	0.0000	0.0017	0.0019	0.0029	0.0037	0.0025	0.0018	0.0013	-0.0047	-0.0005	0.0003	-0.0012
	C_{I}	0.0000	0.0000	0.0000		$C_{Y,a}$	-0.0109	-0.0159	-0.0216	-0.0280	-0.0293	0.0113	0.0094	0.0027	-0.0037	-0.0060	-0.0027	-0.0078	-0.0104	-0.0142	-0.0156	-0.0012	-0.0041	-0.0052	-0.0023	-0.0055	0.0038	-0.0007	-0.0022	-0.0055	-0.0078	-0.0087	-0.0061	-0.0045	0.0150	0.0014	60000	0.0041
	<i>C</i> ,	0.0003	0.0006	0.0016		$C_{m,a}$	0.1038	0.1113	0.1215	0.1258	0.1282	-0.0773	-0.0677	-0.0588	-0.0535	-0.0513	-0.2631	-0.2526	-0.2459	-0.2426	-0.2402	-0.5184	-0.5300	-0.5344	-0.5378	-0.5370	-0.6124	-0.6113	-0.6134	-0.6088	-0.6074	0.1034	0.0491	-0.0052	-0.0798	-0.1748	-0.2648	-0.3542
	$C_{F,S}$	-0.0005	0.0011	-0.0028		$C_{D,a}$	0.0193	0.0347	0.0421	0.0455	0.0513	0.0468	0.0500	0.0650	0.0700	0.0688	0.1198	0.1291	0.1329	0.1371	0.1357	0.2663	0.2715	0.2747	0.2761	0.2739	0.3950	0.3927	0.3932	0.3901	0.3873	0.0154	0.0223	0.0329	0.0478	0.0789	0.1221	0.1696
eristics	<i>C</i> ^m	0.0007	0.0015	0.0044	teristics	$C_{L,a}$	-0.0735	-0.0754	-0.0814	-0.0824	-0.0837	0.0348	0.0268	0.0189	0.0155	0.0144	0.1379	0.1259	0.1194	0.1160	0.1152	0.2503	0.2542	0.2516	0.2519	0.2522	0.1963	0.1959	0.1948	0.1925	0.1935	-0.0728	-0.0339	-0.0015	0.0373	0.0912	0.1396	0.1814
(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	-0.0003	0.0006	-0.0022	(b) Aeropropulsive performance characteristics	C_{I}	-0.0001	-0.0008	-0.0013	-0.0016	-0.0017	0.0015	0.0010	0.0005	0.0003	0.0003	0.0020	0.0017	0.0015	0.0016	0.0016	0.0030	0.0022	0.0018	0.0027	0.0023	0.0044	0.0037	0.0030	0.0030	0.0033	-0.0004	-0.0003	-0.0001	0.0013	0.0015	0.0019	0.0028
' = 0) perforn	$C_{F,j}$	-0.0099	-0.0194	-0.0368	ulsive perfon	<i>C</i> "	0.0030	0.0104	0.0179	0.0272	0.0372	-0.0038	0.0028	0.0103	0.0194	0.0294	0.0007	0.0080	0.0142	0.0228	0.0325	0.0005	0.0065	0.0113	0.0174	0.0282	0.0000	0.0064	0.0112	0.0189	0.0287	0.0025	0.0018	0.0013	-0.0047	-0.0005	0.0003	-0.0012
(a) Static (M	δ_y , deg	-3.02	-3.11	4.41	(b) Aeroprop	C_{Y}	-0.0109	-0.0242	-0.0382	-0.0550	-0.0735	0.0113	0.0008	-0.0138	-0.0306	-0.0493	-0.0027	-0.0163	-0.0269	-0.0412	-0.0590	-0.0012	-0.0129	-0.0220	-0.0303	-0.0508	0.0038	-0.0093	-0.0189	-0.0334	-0.0519	-0.0087	-0.0061	-0.0045	0.0150	0.0014	-0.0009	0.0041
	δ_p , deg	-1.59	-1.91	-3.45		C_m	0.1038	0.1219	0.1456	0.1695	0.1967	-0.0773	-0.0568	-0.0350	-0.0100	0.0159	-0.2631	-0.2416	-0.2220	-0.1989	-0.1728	-0.5184	-0.5188	-0.5101	-0.4926	-0.4668	-0.6124	-0.6004	-0.5892	-0.5638	-0.5389	0.1034	0.0491	-0.0052	-0.0798	-0.1748	-0.2648	-0.3542
	$F_{\not=}/F_i$	0.9454	0.9387	0.9159		$C_{(D-F)}$	0.0193	-0.1225	-0.2633	-0.4188	-0.5266	0.0468	-0.0975	-0.2300	-0.3807	-0.4913	0.1198	-0.0191	-0.1465	-0.2917	-0.3966	0.2663	0.1515	0.0495	-0.0736	-0.1670	0.3950	0.3083	0.2309	0.1368	0.0692	0.0154	0.0223	0.0329	0.0478	0.0789	0.1221	0.1696
	F_{μ}/F_{i}	0.9470	0.9406	0.9202		C_L	-0.0735	-0.0798	-0.0916	-0.1033	-0.1179	0.0348	0.0640	0.0874	0.1146	0.1297	0.1379	0.1901	0.2386	0.2931	0.3266	0.2503	0.3677	0.4624	0.5708	0.6433	0.1963	0.3330	0.4550	0.5878	0.6759	-0.0728	-0.0339	-0.0015	0.0373	0.0912	0.1396	0.1814
	NPR	1.97	3.03	5.06		NPR	1.00	1.99	3.01	4.14	5.02	9.	2.01	3.00	4.15	4.99	0.99	2.01	3.01	4.15	4.99	0.98	2.01	3.01	4.19	5.06	0.98	2.00	3.02	4.20	5.03	1.00	1.00	1.00	1.00	0.99	0.99	0.99
						α, deg	-0.01	-0.01	-0.01	-0.01	0.00	14.99	14.98	14.98	14.99	14.99	24.98	25.02	25.01	25.01	25.02	45.00	44.99	45.00	44.98	4.99	90.00	29.98	59.97	59.98	59.99	-0.01	20.5	6.67	14.98	19.99	25.02	29.99
						W	0.302	0.303	0.300	0.300	0.301	0.301	0.301	0.301	0.301	0.301	0.298	0.300	0.301	0.300	0.301	0.299	0.298	0.299	0.299	0.299	0.300	0.300	0.300	0.301	0.301	0.301	0.301	0.302	0.302	0.300	0.298	0.302

$C_{I,a}$	0.000	0.0022	0.0027	0.0021	0.0025	0.0027	0.0020	0.0044	0.0045	0.0039	0.0039	0.0049	-0.0015	-0.0012	-0.0011	9000:0	0.0011	0.0013	0.0021	0.0022	0.0026	0.0030	0.0025	0.0030	0.0023	0.0021	0.0030	0.0036	0.0042	0.0047	-0.0005	-0.0006	0.0008	-0.000 -0.0000	0.000	0.000	0.0010	0.0010	00000	0.000	0.0007	0.0012	60000	0.0010
C,,,	20000	-0.0014	-0.0033	-0.0020	-0.0026	-0.0017	0.0007	-0.0001	-0.0002	0.0005	-0.0012	-0.0020	0.0105	9600.0	0.0085	0.0018	0.0042	0.0057	0.0049	0.0052	0.0002	-0.0017	0.0007	-0.0003	0.0019	0.0043	0.0030	0.0029	0.0036	0.0049	0.0017	0.0032	0.0044	0.0043	0.0033	0.0030	0.0002	0.000	0003	0.000	0.0008	0.0007	0.0021	0.0029
$C_{Y,a}$	0.0018	0.0053	0.0112	0.0079	0.0097	6900.0	-0.0008	0.0034	0.0040	0.0017	0.0067	0.0099	-0.0238	-0.0208	-0.0177	0.0046	-0.0033	-0.0085	-0.0059	-0.0073	0.0027	0.0079	0.0001	0.0037	-0.0044	-0.0114	-0.0061	-0.0051	-0.0070	9600.0-	-0.0049	-0.0080	40.0104	0.0104	0.0131	0.0133	0.014)	0.0033	0.039	0.0022	0.0018	-0.0017	-0.0045	-0.0061
C, m. a	-0 380K	-0.3886	-0.4305	-0.4583	-0.4905	-0.5197	-0.5697	-0.5915	0609.0-	-0.6107	-0.6730	-0.7148	0.1259	0.0697	0.0175	-0.0582	-0.1495	-0.2404	-0.3331	-0.3616	-0.3924	-0.4408	-0.4700	-0.5022	-0.5334	-0.5650	6009.0-	-0.6085	-0.6554	-0.6679	0.1099	0.1090	0.1131	0.1132	0.114/	0.1130	0.1170	0.1020	-0.0936	0.0910	9680'0-	-0.2878	-0.2822	-0.2792
$C_{D,a}$	0 1865	0.1483	0.1828	0.2073	0.2345	0.2661	0.3198	0.3607	0.3925	0.3934	0.4513	0.4884	0.0444	0.0496	0.0591	0.0706	0.0973	0.1419	0.1847	0.1975	0.1586	0.1943	0.2167	0.2416	0.2730	0.3150	0.3621	0.3899	0.4382	0.4574	0.0201	0.0259	0.0307	0.0303	0.0320	0.0330	0.034	0.025	0.0445	0.0455	0.0477	0.1057	0.1086	0.1102
$C_{L,a}$	0 1923	0.2147	0.2280	0.2371	0.2479	0.2506	0.2481	0.2249	0.1952	0.1958	0.1760	0.1575	-0.0833	-0.0460	-0.0186	0.0197	0.0676	0.1111	0.1539	0.1674	0.2048	0.2219	0.2312	0.2429	0.2491	0.2413	0.2274	0.1927	0.1664	0.1398	-0.0781	-0.0773	06/0/0	0.0798	0.00	-0.0805	0.0558	0.0506	0.0485	0.0464	0.0450	0.1685	0.1616	0.1575
C_{I}	0.0027	0.0022	0.0027	0.0021	0.0025	0.0027	0.0020	0.0044	0.0045	0.0039	0.0039	0.0049	-0.0017	-0.0013	-0.0013	0.0005	0.0010	0.0012	0.0019	0.0021	0.0025	0.0030	0.0024	0.0029	0.0021	0.0020	0.0030	0.0035	0.0040	0.0045	-0.0005	-0.0007	6000	0000	0.000	0.0010	0.0010	0.0007	0.0007	0.0007	0.0007	0.0012	6000.0	0.0010
ڻ	-0 0002	-0.0014	-0.0033	-0.0020	-0.0026	-0.0017	0.0007	-0.0001	-0.0002	0.0005	-0.0012	-0.0020	0.0258	0.0248	0.0241	0.0174	0.0200	0.0219	0.0210	0.0207	0.0157	0.0139	0.0163	0.0152	0.0175	0.0200	0.0189	0.0187	0.0193	0.0208	0.0017	0.0050	0.0076	0.00	0.0108	0.0151	0.0019	0000	0.0030	0.0062	0.0098	0.0007	0.0037	0.0061
C_{Y}	0.0018	0.0053	0.0112	0.0079	0.0097	0.0069	-0.0008	0.0034	0.0040	0.0017	0.0067	0.0099	-0.0505	-0.0473	-0.0448	-0.0226	-0.030/	-0.0368	-0.0339	-0.0344	-0.0242	-0.0192	-0.0271	-0.0234	-0.0316	-0.0388	-0.0339	-0.0326	-0.0344	-0.0374	-0.0049	-0.0112	-0.0163	0.0103	0.030	-0.0305	0.0059	0.0011	-0.0020	-0.0075	-0.0142	-0.0017	-0.0077	-0.0120
<i>C</i> "	-0.3806	-0.3886	-0.4305	-0.4583	-0.4905	-0.5197	-0.5697	-0.5915	-0.6090	-0.6107	-0.6730	-0.7148	0.1691	0.1127	0.0615	-0.0142	-0.1052	-0.1946	-0.2877	-0.3179	-0.3487	-0.3969	-0.4259	-0.4583	-0.4894	-0.5207	-0.5559	-0.5639	-0.6111	-0.6228	0.1099	0.1131	0.1216	0.1217	0.1308	0.1419	-0.1020	-0.0914	-0.0851	-0.0753	-0.0648	-0.2878	-0.2781	-0.2707
$C_{(D-F)}$	0.1865	0.1483	0.1828	0.2073	0.2345	0.2661	0.3198	0.3607	0.3925	0.3934	0.4513	0.4884	-0.4139	-0.4059	-0.4001	0.3834	-0.3496	-0.3001	-0.2421	-0.2069	-0.2287	-0.1812	-0.1503	-0.1150	-0.0686	-0.0003	0.0735	0.1369	0.2227	0.2621	0.0201	0.0341	0.0778	1296	-0.1341	-0.1734	0.0364	-0.0173	-0.0611	-0.1174	-0.1570	0.1057	0.0533	0.0105
C_L	0.1923	0.2147	0.2280	0.2371	0.2479	0.2506	0.2481	0.2249	0.1952	0.1958	0.1760	0.1575	-0.1039	-0.0268	0.0410	0.1197	0.20/6	0.2931	0.3751	0.3914	0.4508	0.4886	0.5116	0.5360	0.5609	0.5842	0.6022	0.5880	0.5780	0.5720	-0.0781	0.0790	0.0832	0.0869	-0.0875	-0.0936	0.0558	0.0646	0.0731	0.0824	0.0871	0.1685	0.1854	0.1999
NPR	66.0	0.99	0.99	86.0	0.98	0.98	0.98	0.98	0.97	0.98	0.97	0.97	4.15	4.15	4.17	4.16	4.10	4.19	4.16	4.16	4.17	4.18	4.18	4.17	4.18	4.18	4.17	4.17	4.18	4.17	5.6 6.7	2. 5 4. 5 5. 5	66.7 00 c	2. 4 20. 4	4 16	5.01	0.99	2.05	2.98	4.14	5.02	0.97	2.05	2.98
α, deg	31.59	35.08	38.01	40.01	42.03	45.00	49.99	54.99	59.99	59.99	64.99	68.22	-0.01	5.00	66.6	00.51	19.98	25.00	29.99	31.57	35.03	38.00	39.99	42.01	42.00	50.01	55.00	59.99	64.97	68.28	0.01	8 6	3 6	8 0	000	0.02	15.01	15.02	15.01	15.01	15.03	24.98	24.97	24.97
W	0.301	0.301	0.300	0.300	0.300	0.300	0.298	0.298	0.304	0.303	0.301	0.301	0.302	0.303	0.301	0.301	0.299	0.298	0.295	0.301	0.303	0.303	0.302	0.302	0.302	0.301	0.298	0.300	0.301	0.298	0.502	0.500	0.50	0.300	0.501	0.501	0.500	0.500	0.500	0.500	0.500	0.501	0.500	0.500

	$C_{l,a}$	0.0010	0.0010	-0.0005	-0.0002	-0.000	0.0011	0.0011	0.0013	0.0017	-0.0009	-0.0007	0.000	0.0010	0.0011	0.0015	
	$C_{n,a}$	0.0046	0.0052	0.0020	0.0019	0.0010	-0.0015	0.0005	0.0013	-0.0026	0.0056	0.0053	0.0015	0.0040	0.0053	0.0030	
	$C_{Y,a}$	-0.0106	-0.0123	-0.0064	-0.0061	-0.0030	0.0042	-0.0013	-0.0042	0.0084	-0.0133	-0.0132	-0.0013	-0.0089	-0.0134	-0.0063	
	$C_{m,a}$	-0.2770	-0.2756	0.1080	0.0528	-0.0020	-0.1016	-0.1959	-0.2852	-0.3710	0.1150	0.0576	-0.0871	-0.1827	-0.2775	-0.3673	
	$C_{D,a}$	0.1115	0.1108	0.0188	0.0197	0.0233	0.0356	0.0633	0.1043	0.1499	0.0330	0.0313	0.0436	0.0709	0.1110	0.1562	
	$C_{L,a}$	0.1551	0.1539	-0.0773	-0.0370	-0.0044	0.0557	0.1147	0.1666	0.2076	-0.0800	-0.0397	0.0424	0.1015	0.1566	0.2004	
oncluded	C_{l}	0.0010	0.0010	-0.0005	-0.0002	-0.0004	0.0011	0.0011	0.0013	0.0017	-0.0010	-0.0008	0.0008	0.0009	0.0011	0.0015	
Table 34. Concluded	<i>C</i> "	0.0102	0.0141	0.0020	0.0019	0.0010	-0.0015	0.0005	0.0013	-0.0026	0.0112	0.0109	0.0071	0.0096	0.0109	0.0086	
	C_Y	-0.0204	-0.0280	-0.0064	-0.0061	-0.0030	0.0042	-0.0013	-0.0042	0.0084	-0.0230	-0.0229	-0.0110	-0.0186	-0.0232	-0.0161	
	C,	-0.2612	-0.2512	0.1080	0.0528	-0.0020	-0.1016	-0.1959	-0.2852	-0.3710	0.1308	0.0733	-0.0713	-0.1669	-0.2617	-0.3513	
	$C_{(D-F)}$	-0.0433	-0.0816	0.0188	0.0197	0.0233	0.0356	0.0633	0.1043	0.1499	-0.1341	-0.1349	-0.1202	-0.0876	-0.0436	0.0056	
	C_L	0.2188	0.2301	-0.0773	-0.0370	-0.0044	0.0557	0.1147	0.1666	0.2076	-0.0875	-0.0326	0.0785	0.1512	0.2203	0.2785	
	NPR	4.15	4.99	0.99	0.99	0.99	0.99	0.98	0.97	96.0	4.16	4.16	4.15	4.16	4.15	4.14	
	a, deg	24.96	24.98	-0.02	4.98	6.67	14.99	20.01	24.99	30.00	0.00	5.01	15.00	20.01	24.97	29.97	
	M	0.500	0.501	0.501	0.503	0.503	0.500	0.501	0.499	0.499	0.501	0.502	0.500	0.503	0.501	0.496	

Table 35. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = -10^{\circ}; \, \delta_{B,E} = 25^{\circ}; \, \delta_{C,F} = 15^{\circ}\right]$

			$C_{l,a}$	0.0000	0.0010	-0.0016	0.0011	0.0012	0.000	0.0005	0.0022	0.0018	0.0019	0.0018	0.0022	0.0014	0.0013	0.0017	0.0035	0.0030	0.0024	0.0024	0.0028	-0.0003	70007	0.0001	0.0014	0.001/	0.0030
			$C_{n,a}$	0.0022	0.0002	0.0005	-0.0050	0.0067	0.0076	-0.0060	-0.0003	-0.0012	0.0035	-0.0064	-0.0025	-0.0014	-0.0019	-0.0032	-0.0009	0.0004	-0.0002	-0.0007	0.0011	0.0016	0.0010	0.0003	-0.0053	0.0014	-0.0022
	C _I 0.0000 -0.0001 -0.0001		$C_{Y,a}$	0.0078	-0.0049	-0.0019	0.0149	0.0191	0.0202	0.0162	90000	0.0014	0.0069	0.0172	0.0070	0.0023	0.0033	0.0084	0.0029	-0.0022	-0.0012	0.0007	0.0024	-0.0033	0.0035	410014	0.01/2	0.0046	0.0074
	C _n 0.0003 0.0006 0.0008 0.0009		$C_{m,a}$	0.1050	0.0966	0.1002	-0.0764	0.0815	0060.0	-0.0883	-0.2607	-0.2618	0.26/0	-0.2751	-0.5124	0.5180	-0.5165	-0.5125	-0.6022	-0.6036	-0.6018	40.5904	-0.5906	0.1048	0.0516	0.0023	0.0731	0.1731	-0.3500
	$C_{F,S}$ -0.0006 -0.0012 -0.0016		$C_{D,a}$	0.0167	0.0191	0.0118	0.0468	0.0521	0.0460	0.0411	0.1171	0.1169	0.11/1	0.1116	0.2607	0.2612	0.2573	0.2468	0.3833	0.3834	0.3819	0.3/04	0.3660	0.0133	0.0206	0.0309	0.0466	0.0761	0.1631
teristics	C _m 0.0021 0.0044 0.0079	cteristics	$C_{L,a}$	-0.0744 -0.0692	-0.06/3	-0.0708	0.0350	0.03/5	0.0437	0.0432	0.1371	0.1371	0.1402	0.1463	0.2482	0.2468	0.2414	0.2473	0.1937	0.1968	0.1936	0.1948	0.1998	0.0740	0.0360	0.0041	0.000	0.1387	0.1804
(a) Static $(M = 0)$ performance characteristics	CF.N -0.0011 -0.0023 -0.0041	(b) Aeropropulsive performance characteristics	C_I	0.0000	-0.0018	-0.0030	0.0011	0.0009	-0.0003	-0.0009	0.0022	0.0015	0.0001	0.0003	0.0022	0.0010	-0.0001 -0.0001	0.0002	0.0035	0.0027	0.0017	0.0013	0.0013	0.0003	-0.002	-0.001	0.0014	0.0017	0.0030
И = 0) perforn	C_{Fj} -0.0095 -0.0176 -0.0265 -0.0329	pulsive perfor	ζ,	0.0022	0.0100	0.0131	-0.0050	0.0013	0.0051	0.0075	-0.0003	0.0041	0.0002	0.0071	-0.0025	0.0040	0.0106	0.0103	-0.0009	0.0059	0.0099	0.0124	0.012/	0.0010	0.0010	0.0003	0.0033	-0.0007	-0.0022
(a) Static (/	δ _y , deg -3.65 -3.78 -3.38 -2.97	(b) Aeropro	C_Y	-0.0078 -0.0171	-0.0271	-0.0286	0.0149	0.0093	-0.0041	-0.0104	0.0006	0.0080	0.0103	-0.0093	0.0070	-0.00/2 -0.01 5 4	-0.0203	-0.0181	0.0029	-0.0117	0.0200	0.0244	0.0249	0.0035	0.003	0.014	0.0172	0.0040	0.0074
	δ _p , deg -6.65 -7.41 -8.71 -9.83		C,	0.1050 0.1329	0.2209	0.2729	49.00	0.04/8 0.04/8	0.0323	0.0836	-0.2607	-0.2291	-0.1474	-0.1034	-0.5124	-0.4849	-0.3899	-0.3415	-0.6022	-0.5704	0.3300	0.4640	0.4147	0.0516	0.0310	0.002	10.0.0 10.1731	-0.2629	-0.3500
	F/F _i 0.8780 0.8623 0.8426 0.8267		$C_{(D-F)}$	0.0167	-0.3991	-0.5018	0.0468	-0.0380	-0.3679	-0.4753	0.1171	0.0232	-0.2929	-0.3879	0.2607	0.143/	-0.0902	-0.1753	0.3833	0.2937	0.207	0.1012	0.0200	9000	0.0200	0.000	0.0761	0.1190	0.1631
	F_j/F_i 0.8858 0.8714 0.8539 0.8401		C_L	0.0744	-0.1325	-0.1595	0.0350	0.0394	0.0894	0.0899	0.1371	0.1834	0.2617	0.2816	0.2482	0.3398	0.4967	0.5447	0.1937	0.3172	0.4212	0.5307	0.0078	04/0:0	6.030	0.0364	0.000	0.1387	0.1804
	NPR 2.01 3.01 4.16 5.03		NPR	2.02	4.16	5.01	0.0	3.02	4.16	5.01	0.99	2.02	4.15	5.02	0.98	3.02	4.15	5.01	0.98	 56. 5	3.6	4.10 7	3.5	3 5	8 5	3 5	? ? ?	0.99	0.99
			α , deg	0.03	0.03	0.01	14.97	14.97	15.02	14.98	25.02	24.96	25.01	24.98	44.99	1. 4. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2. 2.	45.02	44.98	59.99	59.99	50.70	20.00	0.01	4 98	10.00	14 90	19.96	24.98	30.00
			W	0.304	0.302	0.302	0.302	0.302	0.303	0.303	0.303	0.306	0.299	0.303	0.302	0.301	0.298	0.303	0.296	0.299	0.208	0.290	0.253	0.301	0.30	0.301	0.303	0.301	0.306

Table 35. Continued

C ₁ a 0.0029 0.0019 0.0020 0.0020 0.0020 0.0038 0.0038 0.0038 0.0039 0.0024 0.0024 0.0024 0.0023 0.0024 0.0024 0.0024 0.0027 0.0029 0.0009 0.0001	-0.0004 -0.0002
C _{n,a} 6.0021 6.0022 6.0023	0.0013
C_{YA} 0.0063 0.0063 0.0063 0.0068 0.0068 0.0048 0.0049 0.0017 0.0065 0.0017 0.0017 0.0017 0.0017 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003 0.0003	0.0023 -0.0044 -0.0041
Cm.a. 0.3759 -0.3759 -0.3838 -0.4498 -0.4498 -0.4840 -0.5107 -0.5591 -0.6724 -0.6724 -0.6724 -0.6724 -0.6724 -0.6724 -0.6724 -0.6861	0.1096 0.0550
C_{DA} 0.1820 0.1417 0.1762 0.2001 0.2285 0.2587 0.3114 0.3552 0.3897 0.4494 0.04261 0.00221 0.01536 0.01478 0.1153 0.1628 0.0336 0.0346 0.2286 0.2286 0.2286 0.0221 0.0472 0.1478 0.1812 0.1628 0.00212 0.0427 0.4283 0.0186 0.0206 0.0206 0.0206 0.0305 0.0305 0.0305 0.0305	0.1000 0.0179 0.0182
C_{La} 0.1901 0.2122 0.2250 0.2339 0.2460 0.2480 0.2480 0.2485 0.1967 0.1766 0.1967 0.10682 0.00449	0.1604 -0.0786 -0.0392
C ₁ 0.0029 0.0029 0.0021 0.0026 0.0020 0.0020 0.0020 0.0038 0.0038 0.0038 0.0038 0.0038 0.0038 0.0039 0.00012 0.00013 0.00013 0.00014 0.0002 0.0003	0.0006 -0.0004 -0.0002
C _n -0.0021 -0.0022 -0.0030 -0.0023 -0.0033 -0.0003	0.003/ 0.0013 0.0012
C_{Y} 0.0063 0.0051 0.0068 0.0079 0.0079 0.0079 0.0017 0.0065 0.0017 0.0065 0.0017 0.0065 0.0017 0.0065 0.0017 0.0067 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070 0.0070	-0.0073 -0.0044 -0.0041
C _m - 0.3759 -0.3838 -0.4498 -0.4498 -0.4840 -0.5107 -0.5591 -0.5591 -0.6073 -0.6073 -0.1076 -0.1076 -0.1076 -0.1076 -0.1076 -0.1076 -0.1076 -0.1073 -0.1076 -0.1076 -0.1076 -0.1076 -0.1076 -0.1077	-0.2191 0.1096 0.0550
$C_{(D-F)}$ 0.1820 0.1417 0.1762 0.2001 0.2285 0.2285 0.2387 0.3114 0.3552 0.3897 0.4494 0.4494 0.4861 0.2383 0.3897 0.3897 0.3897 0.3897 0.3897 0.03990 0.33885 0.3897 0.04942 0.03980 0.01939 0.01093 0.010940 0.01169 0.01398 0.0167 0.0167 0.0167 0.0072	-0.0818 0.0179 0.0182
C_L 0.1901 0.2122 0.2250 0.2250 0.2339 0.2460 0.2480 0.2480 0.2485 0.1967 0.1766 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1586 0.1587 0.0908 0.0908 0.0908 0.0908 0.0908 0.0908 0.00809 0.00809 0.00809 0.00809 0.00809 0.00809 0.00809 0.00809 0.00809 0.00809	0.2098 -0.0786 -0.0392
NPR 0.099 0.098 0.098 0.098 0.097 0.097 0.097 0.099 0.	5.01 0.99 0.99
α, deg 33.56 33.156 33.10 33.10 33.10 39.97 42.01 44.98 55.00 66.25 66.00 68.25 66.00 68.25 66.00 68.25 66.00 68.25 66.00 68.25 66.00 66.25 66.25 66.00 66.25 66.00 66.25 66.00 66.25 66.	25.01 -0.02 5.00
0.303 0.303 0.300 0.300 0.300 0.293	0.502 0.501 0.503

C,a -0.0004 0.0013 0.0014 0.0018 0.0018 0.0010 0.0010 0.0011 C_{n,a}
0.0005
0.0005
0.0005
0.0006
0.0006
0.0006
0.0005
0.0005
0.0005
0.0005
0.0005 C_{Y,a}
-0.0020
-0.0063
-0.0010
-0.0010
-0.0010
-0.0028
-0.0023
-0.0023
-0.0023
-0.0008 Cm.a 0.0000 0.0990 0.1934 0.2849 0.1067 0.00507 0.00507 0.0883 0.2828 0.3731 C_{D,a}
0.0219
0.0339
0.0621
0.1036
0.1036
0.1490
0.0203
0.0242
0.0242
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342
0.0342 C_{L,a}
-0.0061
0.0538
0.0130
0.1130
0.1038
0.10496
0.0496
0.0496
0.1628
0.2080 $C_l \\ -0.0004 \\ 0.0013 \\ 0.0014 \\ 0.0018 \\ 0.0010 \\ -0.0010 \\ 0.0006 \\ 0.0006 \\ 0.0009 \\ 0.$ Table 35. Concluded C_n 0.0005 0.0003 0.0000 0.0005 0.0051 0.0044 0.0013 0.0042 0.0013 $\begin{array}{c} C_Y \\ -0.0020 \\ 0.0063 \\ 0.0010 \\ 0.0095 \\ 0.0005$ C_m 0.0000 0.0990 0.1934 0.1934 0.1516 0.0951 0.0916 0.0416 0.0416 0.03381 C(D-F) 0.0219 0.0339 0.0621 0.1036 0.10490 -0.1308 -0.1308 -0.1269 -0.1174 -0.0868 -0.0439 0.0051C_L
-0.0061
0.0538
0.0130
0.1130
0.10528
0.0602
0.0901
0.0662
0.01363
0.2055 NPR 0.99 0.99 0.97 0.97 0.97 4.19 4.16 4.16 4.15 4.15 a, deg 9.97 9.97 14.97 20.01 25.00 9.02 5.01 10.03 11.03 11.99 5.01 19.95 25.01 29.97 M 0.503 0.504 0.504 0.498 0.503 0.503 0.503 0.503 0.503 0.503

Table 36. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 15^{\circ}; \delta_{B,E} = 15^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

		$C_{l,a}$	-0.0009	-0.0017	-0.0016	0.0017	0.0011	0.0010	0.0000	0.0007	0.0019	0.0017	0.0016	0.0017	0.0025	0.0028	0.0018	0.0019	0.0018	0.004	0.0030	0.0032	0.0024	-0.0007	-0.0005	-0.0003	0.0012	0.0012	0.0017	
		$C_{n,a}$	0.0028	0.0113	0.0166	0.0193	60000	0.0030	0.0100	0.0136	0.0009	0.0058	0.0108	0.0167	0.000	0.004	0.0022	0.0044	0.0054	0.0000	0.0039	0.0068	0.0079	0.0024	0.0017	0.0013	0.0046	0.0007	0.0006	
	C ₁ 0.0000 0.0000 0.0000 0.0001	$C_{Y,a}$	-0.0102	-0.0180	-0.0367	0.0427	0.0080	0.0009	-0.0154	-0.0240	-0.0032	-0.0129	-0.0235	-0.0365		0.0014	-0.0070	-0.0138	-0.0162	0.0021	9600.0	-0.0174	-0.0216	-0.0075	-0.0055	-0.0039	0.0152	0.0026	0.0017	
	C _n 0.0001 0.0003 0.0006	$C_{m,a}$	0.1014	0.1061	0.0892	0.0740	0.074	-0.0707	-0.0844	-0.0990	-0.2664	-0.2695	-0.2718	0.2866	-0.5062 -0.5234	-0.5416	-0.5499	-0.5632	0.5836	0.0133	-0.6336	-0.6483	-0.6641	0.1006	0.0462	-0.0064	-0.0847	-0.1777	-0.2698 -0.3567	
	C _{F,S} -0.0001 -0.0003 -0.0008	$C_{D,a}$	0.0140	0.0426	0.0581	0.0608	0.0585	0.0694	0.0878	0.0954	0.1175	0.1318	0.1450	0.1638	0.1093	0.2762	0.2839	0.2932	0.3001	0.3901	0.4073	0.4177	0.4249	0.0120	0.0191	0.0306	0.0459	0.0764	0.1159 0.1674	
ristics	C _m -0.0005 -0.0010 -0.0018 -0.0028 teristics	$C_{L,a}$	-0.0729	-0.0720 -0.0720	-0.0595	-0.0489	0.0290	0.0223	0.0256	0.0344	0.1407	0.1376	0.1323	0.1338	0.14/4	0.2578	0.2553	0.2584	0.2711	0.1978	0.1982	0.1994	0.2113	-0.0721	-0.0327	-0.0021	0.0403	0.0930	0.1449 0.1827	
(a) Static ($M = 0$) performance characteristics	δ_{y} , deg C_{Fj} $C_{F,N}$ C_{m} -0.41 -0.0101 0.0003 -0.000 -0.37 -0.0192 0.0006 -0.001 -0.60 -0.0293 0.0009 -0.001 -1.30 -0.0357 0.0013 -0.002	C_l	-0.0009	-0.0017 -0.0017	-0.0012	-0.0007	0.0010	0.0010	0.0012	0.0017	0.0019	0.0015	0.0016	0.0020	0.0024	0.0025	0.0018	0.0023	0.0029	0.0041	0.0030	0.0036	0.0035	-0.0007	-0.0005	-0.0003	0.0012	0.0012	0.0017 0.0027	
= 0) perform	C_{Fj} -0.0101 -0.0192 -0.0293 -0.0357 ulsive perfort	, ,,,	0.0028	0.0081	0.0213	0.0293	0.002	0.0051	0.0147	0.0239	0.0009	0.0067	0.0128	0.0215	0.0013	0.0005	0.0043	0.0091	0.0157	0.0000	0.0060	0.0116	0.0181	0.0024	0.0017	0.0013	-0.0046	-0.0007	0.0006 -0.0021	
(a) Static (M	δ _y , deg -0.41 -0.37 -0.60 -1.30 (b) Aeropropr		-0.0102	-0.0191	-0.0416	-0.0554	0.0068	-0.0011	-0.0202	-0.0371	-0.0032	-0.0141	-0.0256	0.0415	0.000	0.0002	-0.0091	-0.0186	-0.0293	0.0021	-0.0117	-0.0224	-0.0345	-0.0075	-0.0055	-0.0039	0.0152	0.0026	-0.0017 0.0073	
	δ_p , deg 1.65 1.93 1.82 2.12	C,	0.1014	0.0888	0.0613	0.0307	-0.0822	-0.0869	-0.1122	-0.1432	-0.2664	-0.2775	-0.2886	-0.3149	-0.3324	-0.5495	-0.5670	-0.5908	-0.6277	-0.0139	-0.6504	-0.6767	-0.7084	0.1006	0.0462	-0.0064	-0.0847	-0.1777	-0.2698 -0.3567	! !
	F _J F _i 0.9494 0.9427 0.9026	$C_{(D-F)}$	0.0140	-0.1272 -0.2595	-0.4033	-0.4984	-0.0943	-0.2198	-0.3541	-0.4448	0.1175	-0.0133	-0.1309	-0.2527	0.5571	0.1659	0.0686	-0.0205	0.0840	0.3961	0.2606	0.1948	0.1567	0.0120	0.0191	0.0306	0.0459	0.0764	0.1159 0.1674	
	F _J F _i 0.9498 0.9432 0.9269 0.9035	\mathcal{C}_{L}	-0.0729	-0.0 6 83 -0.0619	-0.0447	-0.0282	0.0361	0.1102	0.1591	0.2011	0.1407	0.2103	0.2724	0.3443	0.4009	0.3748	0.4853	0.5927	0.6846	0.1978	0.4726	0.6158	0.7181	-0.0721	-0.0327	-0.0021	0.0403	0.0930	0.1449 0.1827	
	NPR 2.00 3.00 4.16 5.00	NPR	00.1	2.98 2.99	4.17	4.99	2.00	3.00	4.17	5.03	0.99	2.01	3.03	4.18	0.0	1.98	3.04	4.16	5.03	9.70	3.02	4.16	4.98	1.00	1.00	9:	1.00	90.	0.99	
		α, deg	-0.01	9 0	0.01	0.00	15.00	14.98	14.98	15.01	25.02	24.98	25.00	24.98	72.00 75.00	45.02	44.97	44.98	4.98 8.8	60.03	20.00	60.02	90.09	-0.01	4.99	10.01	15.00	20.00	25.00 29.98) !
		M	0.301	0.301	0.302	0.302	0.302	0.301	0.301	0.301	0.300	0.300	0.300	0.300	0.300	0.298	0.298	0.302	0.302	0.293	0.299	0.298	0.298	0.301	0.302	0.301	0.300	0.299	0.307	;

$C_{l,a}$	0.0078	0.0024	0.0034	0.0030	0.0033	0.0027	0.0024	0.0048	0.0045	0.0047	0.0057	-0.0016	-0.0012	-0.0010	0.000	0.0010	0.0013	0.0024	0.0030	0.0031	0.0029	0.0029	0.0026	0.0024	0.0030	0.0035	0.0041	0.0041	-0.0005) 0000 0000 0000 0000 0000 0000 0000 0	0000	-0.0009	0.0010	0.0009	0.0008	0.0008	0.0000	0.0010	0.0010	0.0010	0.0000	90000	
$C_{n,a}$	-0.0014	-0.0010	-0.0033	-0.0022	-0.0027	-0.0006	0.0011	0.0001	0.0008	-0.0010	-0.0023	0.0166	0.0157	0.0143	0.0083	0.0139	0.0143	0.0146	0.0032	0.0015	0.0026	0.0031	0.0043	0.0072	0.0066	0.0066	0.0072	0.0063	0.0013	0.0037	0.0078	0.0000	-0.0017	0.0003	0.0017	0.0039	0.0056	0.0003	0.0024	0.0045	0.0074	0.0094	
$C_{Y,a}$	0.0051	0.0024	0.0104	0.0072	0.0089	0.0017	-0.0037	0.0012	-0.0005	0.0048	0.0092	-0.0351	-0.0320	-0.0275	0.000	0.0201	-0.0285	-0.0291	-0.0080	-0.0038	-0.0068	-0.0089	-0.0121	-0.0207	-0.0170	-0.0163	-0.0179	-0.0155	0.0040	0.0069	-0.0174	-0.0201	0.0053	0.0015	-0.0011	-0.0060	-0.0100	-0.0004	-0.0052	-0.0103	-0.0171	-0.0226 -0.0069	
C _{m.a}	-0.3831	-0.3959	-0.4331	-0.4617	-0.4922	-0.5196	-0.5717	-0.5956	-0.6150	-0.6751	-0.7219	0.0903	0.0351	0.0194	0.0003	-0.1887	-0.3817	-0.4107	-0.4258	-0.4745	-0.5040	-0.5337	-0.5667	-0.6025	-0.6323	-0.6476	-0.6879	-0.6938	0.1078	0.1080	0.1000	0.0924	-0.1049	-0.1045	-0.1061	-0.1132	-0.1236	-0.2901	-0.2959	-0.2970	-0.3071	0.1058	
$C_{D,a}$	0.1852	0.1521	0.1841	0.2088	0.2348	0.2661	0.3204	0.3628	0.3964	0.4525	0.4931	0.0559	0.0655	0.0/61	0.0883	0.1619	0.2111	0.2259	0.1771	0.2139	0.2370	0.2622	0.2953	0.3408	0.3834	0.4173	0.4631	0.4764	0.0189	0.0242	0.0359	0.0374	0.0347	0.0408	0.0458	0.0540	0.0555	0.1050	0.1101	0.1146	0.1228	0.0173	
$C_{L,a}$	0.1935	0.2197	0.2312	0.2404	0.2495	0.2521	0.2506	0.2282	0.1987	0.1767	0.1608	-0.0620	-0.0269	0.0003	0.0834	0.1339	0.1739	0.1862	0.2213	0.2372	0.2467	0.2560	0.2616	0.2540	0.2366	0.2016	0.1698	0.1431	0.0773	-0.0765	-0.0708	-0.0654	0.0568	0.0558	0.0555	0.0580	0.0649	0.1694	0.1701	0.1673	0.1704	-0.0765	
C_I	0.0028	0.0024	0.0034	0.0030	0.0033	0.0027	0.0024	0.0048	0.0045	0.0047	0.0057	-0.0012	-0.0009 -0.0009	0.000	0.0010	0.0020	0.0026	0.0027	0.0033	0.0036	0.0032	0.0033	0.0030	0.0027	0.0035	0.0038	0.0045	0.004	6,000	-0.0009	-0.0008	-0.0005	0.0010	0.0008	0.0008	0.0010	0.0012	0.0010	0.0000	0.0010	0.0010	-0.0006	
<i>C</i> "	-0.0014	-0.0010	-0.0033	-0.0022	-0.0027	0.0006	0.0011	0.0001	0.0008	-0.0010	-0.0023	0.0213	0.0203	0.0189	0.0136	0.0205	0.0192	0.0193	0.0079	0.0062	0.0073	0.0078	0.0000	0.0120	0.0112	0.0113	0.0120	0.0111	0.0013	0.0061	0.0094	0.0126	-0.0017	9000.0	0.0024	0.0057	0.0092	0.0003	0.0028	0.0052	0.0091	0.0022	
C_{Y}	0.0051	0.0024	0.0104	0.0072	0.0089	0.0017	-0.003/	0.0012	-0.0005	0.0048	0.0092	-0.0399	0.0369	0.0324	0.0134	-0.0371	-0.0336	-0.0339	-0.0128	-0.0086	-0.0117	-0.0138	-0.0170	-0.0257	-0.0218	-0.0211	-0.0229	-0.0204 0.0204	966	-0.0132	-0.0192	-0.0247	0.0053	0.0011	-0.0018	-0.0078	-0.0146	-0.0004	-0.0057	-0.0110	-0.0189	-0.0069	
C _m	-0.3831	-0.3959	-0.4331	-0.4617	-0.4922	-0.5196	0.5/1/	0.5650	0.6150	-0.6/51	-0.7219	0.0625	0.0072	0.0472	-0.2171	-0.3156	-0.4098	-0.4385	-0.4536	-0.5023	-0.5319	-0.5618	-0.5948	-0.6309	-0.6599	-0.6755	0.7168	-0.7223	0.10/8	0.1021	0.0900	0.0767	-0.1049	-0.1074	-0.1120	-0.1233	-0.1393	-0.2901	-0.2987	-0.3029	0.3171	0.1058	
$C_{(D-F)}$	0.1852	0.1521	0.1841	0.2088	0.2348	0.2661	0.3204	0.3028	0.3964	0.4525	0.4931	-0.4067	0.3943	0.3562	-0.3167	-0.2549	-0.1799	-0.1597	-0.1929	-0.1415	-0.1097	-0.0742	-0.0248	0.0492	0.1321	0.1984	0.2/40	0.3142	0.0189	-0.0793	-0.1299	-0.1658	0.0347	-0.0152	-0.0591	-0.1072	-0.1382	0.1050	0.0588	0.0166	0.055	0.0173	
C_L	0.1935	0.2197	0.2312	0.2404	0.2495	0.2521	0.2300	0.2282	0.1987	0.1/0/	0.1608	0.04/2	0.0261	0.1626	0.2582	0.3445	0.4165	0.4391	0.4990	0.5341	0.5568	0.5789	0.6026	0.6247	0.6203	0.6100	0.6122	0.3873	-0.0748	-0.0729	-0.0656	-0.0579	0.0568	0.0725	0.0874	0.1068	0.1245	0.1694	0.1959	0.2170	0.2433	-0.0765	
NPR	0.99	0.99	0.99	0.98	86.0	0.98	96.0	8.0	0.70	0.97	76.0	4.15	4.10	4 15	4.16	4.15	4.19	4.16	4.15	4.15	4.15	4.15	4.15	4.15	4.16	4.10	4.14	7. F	2.5	2.99	4.14	4.99	0.99	2.01	5.99	4.17	9.00	0.97	9.6	3.02		0.99	
α, deg	31.59	35.22	38.01	40.03	42.03	45.02	45.73	50.01	00.01	10.00	08.21	0.0	3.6	15.01	20.00	24.98	29.98	31.43	35.06	38.05	39.98	42.00	66.99	24.78	24.93	39.98	50.00	20.00	0.07	-0.02	-0.01	0.0	15.02	14.99	15.00	14.98	14.98	25.01	10.62	24.96	24.90 24.96	-0.03	
M	0.299	0.300	0.299	0.299	667.0	667.0	0.706	0.290	0.300	0.300	667.0	0.300	0.301	0300	0.299	0.299	0.303	0.301	0.301	0.300	0.300	0.299	0.299	0.298	0.302	0.300	0.294	767.0	0.497	0.501	0.501	0.501	0.500	0.499	0.499	0.499	0.502	0.503	0.503	0.502	0.502	0.502	

	$C_{l,a}$	-0.0003	-0.0006	0.0010	0.0011	0.0011	0.0014	-0.0010	-0.0006	-0.0006	0.0009	0.0010	0.0010	0.0016
	$C_{n,a}$	0.0018	0.0010	-0.0013	0.0004	0.0009	-0.0022	0.0079	0.0076	0.0062	0.0047	0.0072	0.0078	0.0055
	$C_{Y,a}$	-0.0058	-0.0033	0.0037	-0.0010	-0.0027	6900.0	-0.0185	-0.0175	-0.0132	0600.0	-0.0163	-0.0191	-0.0113
	C _{m,a}	0.0496	-0.0042	-0.1060	-0.1989	-0.2896	-0.3743	0.0995	0.0427	-0.0103	-0.1111	-0.2105	-0.3078	-0.3987
	$C_{D,a}$	0.0181	0.0223	0.0346	0.0634	0.1046	0.1502	0.0348	0.0367	0.0403	0.0524	0.0802	0.1232	0.1702
	$C_{L,a}$	-0.0355	-0.0035	0.0580	0.1162	0.1694	0.2106	-0.0703	-0.0316	-0.0029	0.0557	0.1168	0.1721	0.2161
ncluded	C_I	-0.0003	-0.0006	0.0010	0.0011	0.0011	0.0014	-0.0008	-0.0005	-0.0004	0.0010	0.0012	0.0011	0.0017
Table 36. Concluded	C,	0.0018	0.0010	-0.0013	0.0004	0.0000	-0.0022	0.0096	0.0093	0.0078	0.0064	0.0089	9600.0	0.0072
	C_{Y}	-0.0058	-0.0033	0.0037	-0.0010	-0.0027	0.0069	-0.0202	-0.0193	-0.0150	-0.0108	-0.0181	-0.0209	-0.0131
	<i>C</i> _m	0.0496	-0.0042	-0.1060	-0.1989	-0.2896	-0.3743	0.0895	0.0326	-0.0203	-0.1213	-0.2205	-0.3179	-0.4089
	$C_{(D-F)}$	0.0181	0.0223	0.0346	0.0634	0.1046	0.1502	-0.1310	-0.1288	-0.1216	-0.1084	-0.0736	-0.0254	0.0273
	C_L	-0.0355	-0.0035	0.0580	0.1162	0.1694	0.2106	-0.0651	-0.0118	0.0310	0.1042	0.1783	0.2472	0.3047
	NPR	0.99	0.09	0.0	0.98	0.97	96.0	4.14	4.17	4.15	4.17	4.14	4.17	4.16
	α, deg	5.03	86.6	15.02	20.02	24.99	30.01	-0.01	2.00	66.6	14.98	19.98	25.00	29.97
	M	0.502	0.502	0.500	0.500	0.502	0.500	0.501	0.502	0.502	0.500	0.501	0.502	0.499

Table 37. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 25^{\circ}; \, \delta_{B,E} = 25^{\circ}; \, \delta_{C,F} = -10^{\circ}\right]$

						$C_{l,a}$	0000	-0.0011	-0.0016	-0.0019	-0.0021	0.0017	0.0013	0.0007	0.0003	0.0001	0.0074	0.0014	0.0008	0.0003	0.0028	0.0024	0.0016	0.0012	0.0003	0.0042	0.0039	0.0030	0.0024	0.0016	-0.000	0.0000	0.0001	0.0017	0.0018	0.0024	0.0030
						$C_{n,a}$	0.0022	9900'0	0.0101	0.0129	0.0120	-0.0052	0.0010	9500	0.0078	0.00/8	0.0051	0.0103	0.0143	0.0152	0.0003	0.0009	0.0021	0.0024	0.0033	0.0002	0.0024	0.0030	0.0046	0.0000	0.0013	0.0011	0.0004	-0.0052	-0.0014	-0.0005	-0.0016
	C_{I}	0.0000	0.0001	0.0002		$C_{Y,a}$	-0.0078	-0.0152	-0.0210	-0.0252	-0.0217	0.0180	0.0090	0.0031	0.0094	0.0027	00100	-0.0213	-0.0306	-0.0335	-0.0008	-0.0032	-0.0088	-0.0109	-0.0141	0.0017	-0.0055	0.000	-0.0151	-0.0194	-0.0036	-0.0027	-0.0005	0.0180	0.0056	0.0027	0.0063
	ڻ	0.0003	0.0018	0.0028		$C_{m,a}$	0.0998	0.0936	0.0836	0.0679	0.0606	0.0817	0.0818	0.1103	0.1326	-0.2681	-0.2813	-0.2987	-0.3290	-0.3462	-0.5188	-0.5618	-0.5843	-0.6089	-0.6261	-0.6121	0.6482	10.0794	-0.7068	0.7270	0.1014	0.0482	-0.0052	-0.0817	-0.1762	-0.2681	-0.3561
	$C_{F,S}$	-0.0005	0.0031	-0.0049		$C_{D,a}$	0.0161	0.0349	0.0527	0.0660	0.0724	0.0470	0.0048	0.0041	0.1001	0.1217	0.1397	0.1591	0.1790	0.1872	0.2668	0.2838	0.2959	0.3091	0.3150	0.3912	0.4061	0.4240	0.4393	0.4496	0.0146	0.0214	0.0321	0.0470	0.0780	0.1217	0.1706
teristics	C _m	-0.0023	0.0067	-0.0089	cteristics	$C_{L,a}$	-0.0706	-0.0624	-0.0547	-0.0453	-0.0417	0.0376	0.0319	0.0200	0.0561	0.1407	0.1442	0.1488	0.1619	0.1704	0.2507	0.2722	0.2808	0.2903	0.2998	0.1966	0.2182	0.2307	0.2420	0.6223	-0.072	-0.0351	0.0035	0.0376	0.0911	0.1407	0.1803
(a) Static $(M = 0)$ performance characteristics	$C_{F,N}$	0.0012	0.0033	0.0045	(b) Aeropropulsive performance characteristics	C_I	-0.0002	-0.0006	-0.0004	0.0003	0.0010	0.0017	0.001	0.0025	0.0031	0.0024	0.0022	0.0026	0.0030	0.0035	0.0028	0.0029	0.0027	0.0034	0.0034	0.0042	4.00.0	0.0041	0.0040	0.0046	40000	0.000	0.0001	0.0017	0.0018	0.0024	0.0030
M = 0) perfor	C_{Fj}	-0.0084	-0.0232	-0.0291	pulsive perfo	°,	0.0022	0.0125	0.0240	0.0425	0.0558	0.0032	0.0045	0.0378	0.0513	-0.0005	0.0112	0.0240	0.0443	0.0598	0.0003	0.0065	0.0158	0.0329	0.0468	0.0002	0.0003	0.0100	0.0341	0.0434	0.0013	0.0011	0.0004	-0.0052	-0.0014	-0.0005	-0.0016
(a) Static (δ_y , deg	-3.61 -4.85	-7.71 -9.48	04,40	(b) Aeropro	C_{Y}	-0.0078	-0.0241	-0.0428	0.0/31	0.0983	0.0190	0.0000	-0.0602	-0.0861	0.0027	-0.0193	-0.0427	-0.0811	-0.1115	-0.0008	-0.0117	-0.0301	-0.0623	-0.0901	0.0017	0.01	-0.0647	0.0047	0.0035	0.0030	77000	-0.0003	0.0180	0.0056	0.0027	0.0063
	δ_p , deg	8.31	8.16	0.00		C **	0.0998	0.0557	0.0153	-0.0380	0.0790	0.0017	-0.1625	-0.2259	-0.2723	-0.2681	-0.3203	-0.3668	-0.4362	-0.4887	-0.5188	-0.5990	-0.6523	-0.7176	-0.7657	0.0121	-0.7460	-0.8121	C998 0	0.0002	0.1014	0.0462	70000	-0.0817	-0.1/62	-0.2681	1900
	F/F_i	0.7984	0.7444	0.17		$C_{(D-F)}$	0.0161	-0.1022	0.1998	0.3016	0.2304	0.04/3	-0.1510	-0.2433	-0.3164	0.1217	0.0206	-0.0547	-0.1358	-0.2047	0.2668	0.2028	0.1423	0.0808	0.0415	0.3548	0.3248	0.3020	0.2825	0.0146	0.0145	0.0214	0.0321	0.04/0	0.0/80	0.1217	0.1700
	F_{μ}/F_{i}	0.8084	0.7588	0.0		C_L	-0.0706	-0.0426	0.0199	0.0074	0.0376	0.0867	0.1349	0.1961	0.2427	0.1407	0.2223	0.2866	0.3678	0.4327	0.2507	0.3810	0.4831	0.5953	0.0731	0.1755	0.4642	0.5859	0.6827	-0.0723	0.0351	0.0031	0.0035	0.0378	0.0911	U.14U/ 0.1803	0.1003
	NPR	3.00	4.13	9		NPR	1.00	2.03	5.02		t 8	2.03	3.03	4.18	5.03	0.99	5.04	2.99	4.14	5.05	86.0		76.7	4.13	0.01	20.5	2.99	4.14	205	8	8: -	3 5	3 5	3 5	3.5	0.0	V.77
						α, deg	0.01	0.05	3 6	0.07	15.00	15.02	14.99	14.98	14.99	25.02	25.02	24.99	25.02	24.98	45.00	45.02	44.98	10.04	60.00	60.00	60.01	60.01	59.97		4 00	10.01	15.01	30.01	35.03	30.02	20.01
						M	0.302	0.302	0.301	0.301	0.301	0.301	0.301	0.302	0.301	0.298	0.299	0.299	0.299	0.299	667.0	0.298	0.298	0.290	0.301	0.298	0.300	0.301	0.301	0300	0.301	0.301	0.301	0.300	0.477 0.708	0.230	0.673

C _{1,a} 0.0023 0.0026 0.0023 0.0026 0.0027 0.0013 0.0017 0.0018 0.0021 0.0017 0.0018 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0023 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013 0.0013	0.0012
C _{n,a} -0.0026 -0.0025 -0.0025 -0.0027 -0.0017 -0.00114 -0.0012 -0.0013 -0.0013 -0.0014 -0.0014 -0.0014 -0.0014 -0.0017	0.0029
C_{YA} 0.0093 0.0084 0.0085 0.0085 0.0085 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0087 0.0088	-0.0063 -0.0106
0.3818 0.3878 0.4278 0.4898 0.5182 0.5182 0.5182 0.5673 0.5673 0.0573 0.0710 0.0173 0.0253 0.0493 0.0593 0.0693 0.0767 0.0693 0.0767 0.0767 0.0763	-0.3040 -0.3123
$C_{D,a}$ 0.1855 0.1449 0.1792 0.2022 0.2022 0.2316 0.23143 0.3148 0.3326 0.04897 0.0660 0.0746 0.0859 0.1042 0.1813 0.2226 0.2410 0.1813 0.2226 0.2410 0.1813 0.2226 0.0426 0.0350 0.0350 0.0350 0.0426 0.0508	0.1121 0.1195
C_{La} 0.1922 0.2112 0.2253 0.2253 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.2487 0.0478 0.0173 0.0078 0.0173 0.0078 0.01734 0.0552 0.0725 0.0725 0.0554 0.0554 0.0556 0.0682 0.0729 0.0572	0.1760
C ₁ 0.0033 0.0026 0.0027 0.0018 0.0027 0.0018 0.0027 0.0018 0.0044 0.0028 0.0037 0.0044 0.0037 0.0037 0.0044 0.0037 0.0044 0.0037 0.0044 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061 0.0061	0.0014
C _n -0.0026 -0.0027 -0.0027 -0.0031 -0.0031 -0.0031 -0.0031 -0.0040 -0.0041 -0.0041 -0.0044	0.0051 0.0095
C_{r} 0.0093 0.0084 0.0065 0.0065 0.0052 0.00108 0.0027 0.0037 0.0037 0.00473 0.0054 0.0054 0.0054 0.0054 0.0054 0.0054 0.0055 0.0055 0.0057	-0.0096 -0.0183
6.3818 6.3818 6.4278 6.4278 6.4488 6.5182 6.5182 6.5182 6.5182 6.5182 6.5182 6.5182 6.5183 6.6131	-0.3180 -0.3366
$C_{(D-F)}$ 0.1855 0.1449 0.1792 0.2022 0.2022 0.2021 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.3143 0.0264 0.0269 0.0269 0.0269 0.0276 0.00276 0.00276 0.00276 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236 0.00236	0.0695
C_L 0.1922 0.2112 0.2253 0.2253 0.2487 0.2485 0.2485 0.2485 0.2486 0.1954 0.1753 0.0032 0.0608 0.1964 0.5536 0.1964 0.5536 0.1964 0.5536 0.0608 0.6008	0.2040 0.2276
N N O 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	2.05
a, deg 33.1.59 33.1.29 33.1.29 33.1.29 33.1.29 33.1.29 33.1.29 33.1.29 45.003 4	24.99 24.97
0.299 0.299 0.299 0.299 0.299 0.298	0.501

	$C_{I,a}$	200	0.000	0.0003	0.0003		0.000	0.001	0.0015	0.001	7.00.0	-0.0012	-0.0008	-0.0008	0.000	0000	0000	0.0015	
	$C_{n,a}$	75000	0.005	0.0036	0.0020	0.0017	0.0010	0.0018	0.000	0.000	0.0013	0.007	0.0004	0.0051	0.0034	0.0053	0.0050	0.0034	
	$C_{Y,a}$	7,100	0.0127	0.0062	0.002	0.000	0.0046	9000	0.003	0.0063	0.0000	0.0130	0.0139	-0.0105	-0.0062	-0.0126	500147	-0.0063	
	$C_{m,a}$	03250	0.3200	0.1051	0.0490	0.0050	-0.1057	-0.1984	-0.2894	-0.3730	00700	0.0730	0.0237	0.0201	J. 134	-0.2275	7247	-0.4167	
	$C_{D,a}$	01279	0.1312	0.0180	0.0189	0.0229	0.0354	0.0637	0.1054	0.1506	0.0361	0.0301	0.038	0.0430	0.0555	0.0853	0.1275	0.1747	
	$C_{L,a}$	0 1848	0.1900	-0.0753	-0.0355	-0.0025	0.0580	0.1158	0.1692	0.2105	-0.0556	-0.0333	0.000	26000	0.0/32	0.1293	0.1848	0.2297	
ncluded	C_l	0.0013	0.0014	-0.0003	0.0001	-0.0003	0.0013	0.0012	0.0015	0.0017	0.0004	0.000	0000	0.0000	0.0014	0.0013	0.0016	0.0023	
Table 37. Concluded	C "	0.0165	0.0215	0.0020	0.0017	0.0010	-0.0016	0.0003	0.0005	-0.0019	0.0176	0.0170	0.0158	0.0130	0.0141	0.0160	0.0167	0.0142	
	C_{Y}	-0.0313	0.0419	-0.0062	-0.0052	-0.0029	0.0046	-0.0006	-0.0015	0.0063	-0.0336	-0.0317	-0.0284	0.020	0.0243	-0.0306	-0.0330	-0.0245	
	<i>C</i> "	-0.3651	-0.3864	0.1051	0.0499	-0.0050	-0.1057	-0.1984	-0.2894	-0.3739	0.0409	-0.0142	-0.0663	0.1725	0.1/2	-0.2657	-0.3634	-0.4552	
	$C_{(D-F)}$	0.0136	-0.0082	0.0180	0.0189	0.0229	0.0354	0.0637	0.1054	0.1506	-0.0962	-0.0918	-0.0837	0.0673	0.00.0	-0.0327	0.0141	0.0684	
	C_L	0.2596	0.2831	-0.0753	-0.0355	-0.0025	0.0580	0.1158	0.1692	0.2105	-0.0366	0.0122	0.0509	0.1258	0.120	0.1925	0.2589	0.3131	
	NPR	4.19	5.02	0.99	0.99	0.99	0.09	0.98	0.97	96.0	4.11	4.11	4.13	4 16		4.15	4.15	4.15	
	α, deg	24.98	24.96	0.02	4.99	86.6	15.00	19.98	25.00	29.99	0.02	5.01	86.6	14 98	0000	19.98	24.98	29.94	
	M	0.500	0.500	0.502	0.500	0.504	0.501	0.502	0.500	0.502	0.499	0.500	0.500	0.503	0000	705.0	0.499	0.500	

Table 38. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D}=15^{\circ};\,\delta_{B,E}=25^{\circ};\,\delta_{C,F}=-10^{\circ}\right]$

		($C_{l,a}$	-0.0007 -0.0013	-0.0017	0.0018	6.0018 5.0018	0.0010	0.0000	9000'0	0.0004	0.0003	0.0018	0.0013	0.0010	0.0008	0.0003	0.0024	0.0017	0.0017	0.0013	0.0045	0.0036	0.0025	0.0028	0.0024	-0.0007	40.0004	-0.0003	0.0011	0.0012	7,000
		,	$C_{n,a}$	0.0029 0.0051	0.0055	0.0052	0.0055	-0.0047	-0.0038	0.0044	-0.0020	-0.0013	0.0011	0.0019	0.0024	0.0037	0.0052	0.0010	0.0017	0.0022	0.0041	0.0000	0.0028	0.0034	0.0045	0.0069	0.0029	0.0024	0.0020	-0.0047	0000	0.000
	C _l 0.0000 0.0000 0.0001 0.0002	ζ	Cy,a	-0.0109 -0.0181	-0.0186	-0.0168	-0.0172 -0.0152	0.0131	0.0108	0.0128	0.0064	0.0045	-0.0053	-0.0079	-0.0088	0.0119	0.01/0	-0.0035	-0.0064	-0.0089	-0.0146	-0.0003	-0.0074	40.010	-0.0151	-0.0227	-0.0109	-0.0088	-0.0079	0.0139	0.0013	7700.0
	C _n 0.0005 0.0010 0.0017 0.0024	Ç	C _{m,d}	0.1012 0.1032	0.1011	0.0937	0.0900	-0.0857	-0.0832	-0.0820	-0.0881	-0.1021	-0.2678	-0.2730	-0.2784	-0.2923	0.3061	-0.5386	-0.5510	-0.5692	-0.5930	-0.6107	-0.6217	-0.6301	-0.6566	-0.6815	0.1012	0.0474	0.0049	0.0824	-0.1783	0.4071
	C _{F,S} -0.0008 -0.0018 -0.0030 -0.0041	,	$C_{D,a}$	0.0121	0.0259	0.0294	0.0297	0.0465	0.0552	0.0569	0.0619	0.0654	0.1193	0.1271	0.1293	0.1365	0.1429	0.2731	0.2771	0.2876	0.2990	0.3905	0.3954	0.3984	0.4146	0.4279	0.0121	0.0199	0.0304	0.0466	0.0776	0.1170
ristics	C _m 0.0004 0.0003 -0.0012 -0.0029 enistics		$C_{L,a}$	-0.0729 -0.0720	-0.0699	-0.0630	0.0601	0.0420	0.0379	0.0355	0.0375	0.0477	0.1413	0.1409	0.1434	0.1501	0.1590	0.2564	0.2610	0.2660	0.2780	0.1978	0.2025	0.2053	0.2136	0.2271	-0.0729	-0.0335	-0.0029	0.0389	0.0937	0.1410
(a) Static ($M = 0$) performance characteristics	δ_{y} , deg $C_{F,j}$ $C_{F,N}$ C_{m} -4.94 -0.0094 -0.0002 0.000 -5.80 -0.0173 -0.0001 0.000 -6.60 -0.0260 0.0006 -0.001 -7.31 -0.0322 0.0013 -0.005		<i>د</i>	-0.0007 -0.0012	-0.0011	-0.0005	0.0003	0.0010	0.0010	0.0012	0.0018	0.0025	0.0018	0.0015	0.0017	0.0022	0.0027	0.0027	0.0024	0.0031	0.0035	0.0045	0.0037	0.0031	0.0042	0.0047	-0.0007	0.0004	-0.0003	0.0011	0.0012	0.0017
= 0) perform	C _{F,j} -0.0094 -0.0173 -0.0260 -0.0322 ulsive perform		ڻ'	0.0029	0.0220	0.0318	0.0341	-0.0047	0.0044	0.0123	0.0264	0.0374	0.0011	0.0101	0.0190	0.0320	0.0440	0.000	0.0185	0.0304	0.0424	0.000	0.0110	0.0203	0.0331	0.0457	0.0029	0.0024	0.0020	-0.0047	0.0008	0.000
(a) Static (M	8y, deg -4.94 -5.80 -6.60 -7.31	dordorar (a)	C,	-0.0109 -0.0309	-0.0463	-0.0617	0.0654	0.0131	-0.0022	-0.0151	-0.0417	-0.0613	-0.0053	-0.0207	-0.0366	-0.0597	-0.0829	0.000 40.000	-0.0345	-0.0565	-0.0797	-0.0003	-0.0205	-0.0388	-0.0633	-0.0887	-0.0109	-0.0088	-0.0079	0.0139	0.0013	-0.0027
	δ_p , deg -1.07 -0.32 1.30 2.32		C _m	0.1012	0.1053	0.0780	0.0711	-0.0857	-0.0772	-0.0778	-0.1070	-0.1476	-0.2678	-0.2671	-0.2743	-0.3112	0.3520	0.5377	-0.5471	-0.5880	-0.6379	-0.6107	-0.6158	-0.6264	-0.6757	-0.7272	0.1012	0.0474	-0.0049	-0.0824	0.1783	-0.2071
	F/F _i 0.8706 0.8542 0.8297 0.8094	,	$C_{(D-F)}$	0.0121	-0.2477	-0.3630	-0.3873	0.0465	-0.0904	-0.2099	-0.3368	-0.4253	0.1193	-0.0087	-0.1196	-0.2346	-0.3135	0.2000	0.0813	0.0029	-0.0462	0.3905	0.3178	0.2578	0.2142	0.1884	0.0121	0.0199	0.0304	0.0466	0.0776	0.1133
	F _f /F _i 0.8740 0.8586 0.8354 0.8167	ţ	\mathcal{C}_{Γ}	-0.0729 -0.0748	-0.0714	-0.0550	-0.0506	0.0420	0.0739	0.1054	0.1539	0.2007	0.1413	0.2012	0.2577	0.3333	0.3946	0.3500	0.4547	0.5641	0.6520	0.1978	0.3313	0.4459	0.5792	0.6834	-0.0729	-0.0335	-0.0029	0.0389	0.0937	U.1418
	NPR 2.01 3.00 4.15 5.02	į	NPR	1.00	3.00	4.00	4.15	0.0	2.00	3.00	4.15	5.01	0.99	2.00	2.99	4.15	20.0 40.0	0.90	3.01	4.15	5.01	0.98	2.02	3.03	4.15	5.02	1:08	9.	1.00	0.1	0.60 0.50	6.99
			a, deg	0.03	0.01	0.02	0.01	15.00	14.98	15.00	14.98	15.00	25.02	24.99	25.00	24.97	24.97	45.01	8, 8,	45.02	44.98	59.99	90.09	29.97	29.97	59.98	0.03	4.99	10.01	15.00	20.03	10.62
		,	¥	0.297	0.300	0.301	0.298	0.299	0.298	0.299	0.299	0.299	0.299	0.300	0.300	0.300	0.300	0.301	0.300	0.300	0.300	0.301	0.300	0.300	0.299	0.299	0.297	0.298	0.299	0.299	0.299	0.302

$C_{l,a}$	0.0026	0.0024	0.0024	0.0023	0.0021	0.0025	0.0023	0.0046	0.0044	0.0044	0.0058	-0.0022	-0.0016	-0.0015	0.0003	0.0006	0.0009	0.0019	0.0017	0.0021	0.0024	0.0019	0.0021	0.0017	0.0028	0.0032	0.0034	0.0034	-0.0003	0.0005	7000	0.000	-0.0010	0.0000	0.0007	0.0006	0.0005	0.0004	0.0010	0.0000	0.0000	0.0006
$C_{n,a}$	-0.0017	-0.0015	-0.0004	-0.0016	0000	00003	0.0010	0.0007	0.0012	-0.0003	-0.0017	0.0047	0.0042	0.0028	-0.0033	0.0013	0.0030	0.0013	0.0018	0.0030	0.0003	0.0026	0.0030	0.0055	0.0045	0.0048	0.0057	0.0053	0.0017	0.0031	0.0037	0.004	0.0043	-0.0017	-0.0014	-0.0013	-0.0004	-0.0003	0.0005	0.0011	0.0017	0.0028
$C_{Y,a}$	0.0046	0.0035	0.0005	0.0032	0.0014	0.0019	-0.0036	-0.0008	-0.0021	0.0026	0.0073	-0.0138	-0.0118	-0.0077	0.0115	-0.0035	0.008/	-0.0029	0.0031	5.00st	0.008	-0.0097	-0.0110	-0.0190	-0.0149	-0.0151	-0.0179	-0.0164	-0.0049	0.0086	50103	0.0114	-0.0116	0.0047	0.0041	0.0043	0.0018	0.0011	-0.0020	-0.0041	-0.0053	-0.0088
$C_{m,a}$	-0.3536	-0.3806	-0.3886	-0.4273	0.4504	-0.5177	-0.5688	-0.5925	-0.6143	-0.6773	-0.7168	0.0951	0.0378	-0.0170	-0.0896	-0.193/	-0.2919	0.3900	0.4177	-0.4786	-0.5111	-0.5387	-0.5713	-0.6075	-0.6374	-0.6541	-0.6917	-0.7006	0.1075	0.1077	0.1003	0.0989	0.0925	-0.1066	-0.1092	-0.1108	-0.1176	-0.1237	-0.2906	-0.2975	-0.3005	-0.5101
$C_{D,a}$	0.1678	0.1862	0.1478	0.1818	0.2340	0.2651	0.3189	0.3606	0.3956	0.4536	0.4893	0.0291	0.0375	0.0502	0.0614	0.0917	0.1370	0.16/0	0.1695	0.2067	0.2310	0.2543	0.2879	0.3333	0.3771	0.4114	0.4552	0.4718	0.0189	0.0230	0.0267	0.0270	0.0280	0.0384	0.0402	0.0419	0.0447	0.0467	0.1055	0.1092	0.1106	0.1142
$C_{L,a}$	0.1805	0.1909	0.2129	0.2260	0.2464	0.2494	0.2483	0.2265	0.1974	0.1775	0.1586	-0.0656	-0.0271	0.0020	0.0387	0.0987	0.1499	0.1942	0.2023	0.2441	0.2547	0.2632	0.2694	0.2632	0.2476	0.2169	0.1865	0.1606	-0.0769	0.0778	-0.0713	-0.0703	-0.0651	0.0603	0.0609	0.0612	0.0649	0.0692	0.1703	0.1719	0.1724	0.1700
C_{l}	0.0026	0.0024	0.0024	0.0023	0.0023	0.0025	0.0024	0.0046	0.0044	0.0044	0.0058	-0.0008	-0.0002	0.0000	0.0018	0.0020	0.0024	0.0033	0.0031	0.0037	0.0034	0.0033	0.0035	0.0031	0.0042	0.0046	0.0048	0.0049	-0.0003	5.0004	-0.0004 40004	-0.0003	-0.0002	0.0009	0.0008	0.000	0.0010	0.0012	0.0010	0.0010	0.0010	0.001
"	-0.0017	-0.0015	0.0004	-0.0016	60000	-0.0003	0.0010	0.0007	0.0012	-0.0003	-0.0017	0.0330	0.0328	0.0315	0.0250	0.0294	0.0313	0.0301	0.0301	0.0286	0.0305	0.0307	0.0311	0.0340	0.0331	0.0330	0.0342	0.0339	0.0017	0.0000	0.0137	0.0144	0.0182	-0.0017	0.0015	0.0047	0.0098	0.0136	0.0005	0.0040	0.0077	0.010.0
C_{Y}	0.0046	0.0035	0.0005	0.0032	0.0019	0.0004	-0.0036	-0.0008	-0.0021	0.0026	0.0073	-0.0618	-0.0603	-0.0563	-0.0364	0.0310	0.0509	-0.0500	-0.0561	-0.0504	-0.0563	-0.0573	-0.0587	-0.0672	-0.0632	-0.0629	-0.0663	0.0648	-0.0049	-0.0132	-0.0274	-0.0288	-0.0353	0.0047	-0.0006	-0.0058	-0.0155	-0.0225	-0.0020	-0.0087	0.0154	0.0200
<i>C</i> ,	-0.3536	-0.3806	-0.3886	-0.4273	-0.4894	-0.5177	-0.5688	-0.5925	-0.6143	-0.6773	-0.7168	0.0760	0.0188	-0.0363	0.1084	0.2108	0.3108	-0.4366	-0.4483	-0.4974	-0.5299	-0.5574	-0.5901	-0.6265	-0.6565	-0.6729	-0.7108	-0.7197	0.107	0.1096	0.0946	0.0919	0.0760	-0.1066	-0.1070	-0.1094	-0.1244	-0.1400	-0.2906	0.2954	0.2990	00.12.0
$C_{(D-F)}$	0.1678	0.1862	0.1478	0.1818	0.2340	0.2651	0.3189	0.3606	0.3956	0.4536	0.4893	-0.3846	-0.3796	0.3609	0.3368	0.2310	0.657	-0.1447	-0.1622	-0.1099	-0.0778	-0.0451	0.0033	0.0726	0.1450	0.2126	0.2867	0.3250	0.0189	-0.0303	-0.1168	-0.1235	-0.1567	0.0384	-0.0122	-0.0542	-0.0985	-0.1294	0.1055	0.0610	0.0700	1210.0
C_L	0.1805	0.1909	0.2129	0.2250	0.2464	0.2494	0.2483	0.2265	0.1974	0.1775	0.1586	-0.0560	0.0187	0.0842	0.1555	0.3346	0.7076	0.4303	0.4703	0.5029	0.5257	0.5450	0.5672	0.5887	0.5952	0.5795	0.5695	0.5522	0.0783	-0.0753	-0.0684	-0.0668	-0.0575	0.0603	0.0739	0.0864	0.1067	0.1239	0.1703	0.1955	0.2138	0.41-0.0
NPR	0.99	0.99	0.99	0.98 0.98	0.98	0.98	0.97	0.97	0.97	0.97	96.0	4.16	4.14	4.10	4.15	51.4	4 15	4.15	4.16	4.16	4.15	4.15	4.15	4.15	4.15	4.15	4.15	7. C	3.5	30.6	4.00	4.16	5.03	0.98	2.01	3.00	4.15	5.01	0.97	<u>.</u> 3. 5.	5.00 4 13	ì
α, deg	29.99	31.68	55.09	38.01 40.02	42.00	44.99	50.03	54.99	60.02	64.99	68.24	0.01	6,93	10.01	20.02	24.08	20.00	31.53	34.90	37.97	39.97	41.97	45.02	50.01	54.98	59.97	64.95	58.IS	20.0	0.02	0.03	0.02	0.05	15.03	15.00	14.97	14.99	14.97	25.00	20.02 20.02	24.99 24.07	77:17
M	0.300	0.298	0.301	0.299	0.301	0.301	0.300	0.298	0.297	0.299	0.298	0.300	0.297	0.290	0.203	0.200	0.200	0.299	0.301	0.302	0.301	0.301	0.300	0.299	0.298	0.300	0.298	0.298	0.490	0.499	0.498	0.498	0.499	0.499	0.499	0.499	0.499	0.499	0.500	0.499	0.499	<u> </u>

	$C_{l,a}$	0.0005	-0.0004	-0.0003	-0.0005	0.0010	0.0010	0.0010	0.0015	-0.0012	-0.0009	-0.0008	0.0008	0.0007	0.0010	0.0010
	$C_{n,a}$	0.0030	0.0025	0.0022	0.0012	-0.0011	0.0003	0.0010	-0.0025	0.0038	0.0035	0.0021	0.0003	0.0027	0.0034	0.0009
	$C_{Y,a}$	-0.0094	-0.0087	-0.0076	-0.0043	0.0026	-0.0014	-0.0036	0.0077	-0.0117	-0.0103	-0.0063	-0.0012	-0.0083	-0.0110	-0.0032
	$C_{m,a}$	-0.3186	0.1047	0.0492	-0.0045	-0.1064	-0.1982	-0.2901	-0.3745	0.0991	0.0421	-0.0111	-0.1153	-0.2121	-0.3099	-0.4008
	$C_{D,a}$	0.1175	0.0178	0.0188	0.0228	0.0355	0.0639	0.1055	0.1511	0.0264	0.0271	0.0315	0.0426	0.0720	0.1140	0.1610
	$C_{L,a}$	0.1818	-0.0750	-0.0347	-0.0027	0.0587	0.1165	0.1700	0.2110	-0.0699	-0.0303	-0.0012	0.0613	0.1213	0.1780	0.2226
Concluded	<i>C</i> ¹	0.0013	-0.0004	-0.0003	-0.0005	0.0010	0.0010	0.0010	0.0015	-0.0007	-0.0003	-0.0003	0.0012	0.0012	0.0015	0.0016
lable 38. Cor	ڻ	0.0168	0.0025	0.0022	0.0012	-0.0011	0.0003	0.0010	-0.0025	0.0140	0.0136	0.0122	0.0104	0.0129	0.0137	0.0112
•	C_{Y}	-0.0330	-0.0087	-0.0076	-0.0043	0.0026	-0.0014	-0.0036	0.0077	-0.0289	-0.0274	-0.0235	-0.0182	-0.0256	-0.0283	-0.0206
	<i>C</i> ^{**}	-0.3348	0.1047	0.0492	-0.0045	-0.1064	-0.1982	-0.2901	-0.3745	0.0922	0.0354	-0.0177	-0.1219	-0.2190	-0.3168	-0.4078
	$C_{(D-F)}$	-0.0462	0.0178	0.0188	0.0228	0.0355	0.0639	0.1055	0.1511	-0.1222	-0.1199	-0.1141	-0.0989	-0.0671	-0.0201	0.0331
	C_L	0.2663	-0.0750	-0.0347	-0.0027	0.0587	0.1165	0.1700	0.2110	-0.0665	-0.0141	0.0278	0.1026	0.1756	0.2443	0.3004
	NPR	2.00	66.0	66.0	0.99	66.0	0.98	0.97	96.0	4.16	4.15	4.13	4.14	4.16	4.16	4.17
	α, deg	25.01	0.0	96.	66.6	15.02	19.98	25.00	29.98	0.00	4.99	96.6	14.99	20.00	25.00	29.98
	W	0.499	0.500	0.501	0.502	0.499	0.500	0.499	0.500	0.500	0.501	0.499	0.501	0.500	0.499	0.499

Table 39. Static and Aeropropulsive Performance Characteristics at Military Power

 $\left[\delta_{A,D} = 25^{\circ}; \delta_{B,E} = 15^{\circ}; \delta_{C,F} = -10^{\circ}\right]$

						Ç	$C_{l,a}$	-0.0003	-0.0007	-0.0010	-0.0010	-0.0010	0.0013	0.0012	0.001	0.000	0.0010	0.0021	0.0022	0.0015	0.0014	0.0027	0.0024	0.0023	0.0014	0.0012	0.0048	0.0038	0.0030	0.0030	0.0036	-0.0003	-0.0002	0.0001	0.0014	0.0017	0.0023	0.0030
						Ç	$C_{n,a}$	0.0029	0.0043	0.0041	0.0024	0.0018	5000	-0.0024	6.813	0.0017	0.0010	0.0040	0.0053	0.0064	0.0061	-0.0013	0.0024	0.0028	0.0045	0.0043	0.0001	0.0028	0.0042	0.0059	0.0076	0.0022	0.0017	0.0013	-0.0050	-0.0010	0.0002	-0.0015
	C_I	0.000	0.0001	0.0001		Ç	C Y,a	-0.0097	-0.0138	-0.0122	0.0061	0.0032	0.0140	0.007	0.0000	0.0080	-0.0037	-0.0128	-0.0165	-0.0198	-0.0184	0.0049	-0.0071	-0.0081	-0.0139	-0.0130	0.0038	-0.0056	-0.0103	-0.0159	-0.0206	-0.0073	-0.0053	-0.0042	0.0159	0.0035	-0.0006	0.0049
	ر"	0.0001	0.0003	0.0010		Ċ	C m,a	0.0983	0.0780	0.0634	0.0657	0.0633	0.0820	0.0977	0.113	-0.1244	-0.2672	-0.2979	-0.3171	-0.3283	-0.3347	-0.5180	-0.5649	-0.5917	-0.6061	-0.6198	-0.6116	8,4%	-0.0813	-0.6979	-0.7089	0.0987	0.0456	-0.0071	-0.0826	-0.1785	-0.2690	-0.3542
	$C_{F,S}$	0.0001	-0.0002	-0.0015 -0.0029		ر	$\sim D,a$	0.0182	0.0264	0.0268	0.0304	0.0309	0.0482	0.055	0.0684	0.0667	0.1206	0.1335	0.1398	0.1460	0.1472	0.2644	0.2840	0.2948	0.3039	0.3109	0.3912	0.4075	0.4244	0.4352	0.4407	0.0147	0.0218	0.0327	0.0482	0.0796	0.1223	0.1696
teristics	<i>C</i> ^{**}	-0.0028	-0.0050	-0.00/s	cteristics	ن	C.L.a	-0.0700	-0.0539	0.0433	0.0433	0.0380	0.0380	0.0440	0.0573	0.0621	0.1403	0.1575	0.1694	0.1759	0.1816	0.2493	0.2744	0.2882	0.2923	0.2977	0.1997	0.2192	0.2.208	0.2422	0.2472	9690.0-	-0.0322	-0.0015	0.0386	0.0932	0.1418	0.1787
(a) Static ($M = 0$) performance characteristics	$C_{F,N}$	0.0015	0.0026	0.0049	(b) Aeropropulsive performance characteristics	ن	7	-0.0003	-0.0003	0.0000	0.000	0.0013	0.0019	0.0010	0.0027	0.0033	0.0022	0.0024	0.0030	0.0033	0.0037	0.0027	0.0027	0.0031	0.0031	0.0037	0.0048	0.0042	0.0030	0.0048	0.0059	-0.0003	-0.0002	0.0001	0.0014	0.0017	0.0023	0.0030
H=0) perform	$C_{F,j}$	-0.0090	49:00	-0.0307	pulsive perfor	ن	r)	0.0029	0.0051	0.0085	0.0183	-0.0045	-0.0016	0.0074	0.0147	0.0253	0.0010	0.0049	0.0097	0.0224	0.0331	-0.0013	0.0032	0.0071	0.0205	0.031/	0.0001	0.0037	0.000	0.0218	0.0346	0.0022	0.0017	0.0013	-0.0050	-0.0010	0.0002	-0.0015
(a) Static (i	δ _y ., deg	0.77	-0.70	-3.46 -5.32	(b) Aeropro	ڻ		-0.0097	-0.0119	0.0133	-0.0483	0.0140	0.0094	0.0035	-0.0187	-0.0368	-0.0037	-0.0109	-0.0196	-0.0439	-0.0632	0.0049	-0.0052	-0.0112	-0.0377	0.0286	0.0038	6.663	0.000	160.0-	-0.0655	-0.0073	-0.0053	-0.0042	0.0159	0.0035	-0.0006	0.0049
	δ_p , deg	9.62	8.96	8.98		Ü	E .	0.0983	0.0343	0.0138	0.034	-0.0826	-0.1417	-0.1934	-0.2385	-0.2726	-0.2672	-0.3411	-0.3960	-0.4472	-0.4827	-0.5180	-0.6086	-0.6707	0.7252	-0.7698	0.0110	0.0910	0.160	-0.8102	-0.8304	0.0987	0.0456	-0.0071	-0.0826	-0.1785	0.2690	-V.3342
	$F_{J}F_{i}$	0.8307	0.8110	0.7771		C S	$(D-C)^{-1}$	0.0182	0.1128	-0.2328	-0.4579	0.0485	-0.0711	-0.1784	-0.2990	-0.3826	0.1206	0.0188	-0.0776	-0.1840	-0.2599	0.2644	0.2023	0.1406	0.0692	0.0184	0.3582	0.3306	90000	0.2920	0.2031	0.0147	0.0218	0.0327	0.0482	0.0796	0.1223	0.1070
	F_{μ}/F_{i}	0.8427	0.8211	0.7900		ڻ	7	0.0700	0.0303	0.078	0.0323	0.0380	0.1033	0.1625	0.2198	0.2619	0.1403	0.2366	0.3157	0.3972	0.4557	0.2493	0.3894	0.5001	0.6134	0.0999	0.1557	0.2318	0.6100	0.0109	0.7034	0.0096	-0.0322	-0.0015	0.0386	0.0932	0.1418	0.1707
	NPR	2.02	3.01	5.01		NPR	-	3.5	3.6	2.8 4 16	4.99	80.	1.99	3.00	4.18	4.98	0.99	1.98	3.00	4.16	4.99	96.0 86.0	3.6	3.00	5. 5. C. 5.	86.0	200	90.	4 16	9.10	3.5	3.5	8.7	8.5	8.5	1.00	66.0 66.0 66.0	. 0.33
						α, deg		0.0	3 8	0.07	000	15.00	15.01	15.01	15.00	15.00	25.02	24.99	24.97	24.99	24.97	45.02	\$. \$	45.00	44.98	3 5	90.00	50.00	60.00	50.00	12.70	0.03	2,01	9.99	15.02	19.98	25.00 29.99	72.77
						M	600	0.302	0.300	0.301	0.299	0.299	0.299	0.300	0.299	0.300	0.300	0.300	0.300	0.300	0.300	0.298	0.301	0.300	0.299	0.305	0.301	0.301	0.301	0.301	0.00	0.300	0.301	0.301	0.300	0.298	0.298	0.4.0

$C_{l,a}$	0.0030	0.0025	0.0027	0.0032	0.0027	0.0028	0.0046	0.0044	0.0046	0.0059	-0.0016	-0.0013	-0.0013	0.0000	0.0012	0.0014	0.0023	0.0023	0.0020	0.0027	0.0017	0.0019	0.0017	0.0018	0.0028	0.0038	0.0039	0.0046	-0.0005	-0.0007	-0.0008	0.0010	0.0010	0.001	0.001	0.0010	0.0008	0.0013	0.0013	0.0012	0.0010	0.0009	-0.0004
$C_{n,a}$	-0.0007	-0.0013	0.0029	0.0030	-0.0013	0.0003	-0.0002	0.0002	-0.0012	-0.0031	0.0036	0.0032	0.0029	-0.0018	0.0031	0.0057	0.0037	0.0037	0.0027	-0.0008	0.0019	0.0016	0.0037	0.0071	0.0048	0.0055	0.0064	0.0082	0.0014	0.0022	0.0026	0.0028	0.0027	6.0019	9003	0.0000	0.000	0.0003	0.0017	0.0022	0.0028	0.0030	0.0018
$C_{Y,a}$	0.0015	0.0050	0.0093	0.0115	0.0049	0.0004	0.0033	0.0024	0.0067	0.0132	-0.0093	0800	-0.0079	0.0079	-0.0077	-0.0164	-0.0104	-0.0106	-0.0072	0.0027	-0.0070	-0.0057	-0.0122	-0.0213	-0.0134	-0.0145	-0.0172	-0.0217	-0.0041	-0.0061	6900.0	-0.0069	0.0000	0.0002	0.0029	0.000	0.0008	-0.0003	-0.0047	-0.0063	-0.0083	-0.0091	-0.0056
$C_{m,a}$	-0.3848	-0.3909	-0.4312	0.4380	-0.5180	-0.5662	-0.5922	-0.6126	-0.6788	-0.7196	0.0763	0.0183	-0.0371	-0.1213	-0.2275	-0.3265	-0.4243	-0.4496	-0.4579	-0.5116	-0.5405	-0.5698	-0.6031	-0.6391	-0.6714	-0.6938	-0.7251	-0.7205	0.1061	0.0951	0.0871	0.0824	0.0/98		-0.1161	-0.1334	-0.1366	-0.2906	-0.3072	-0.3176	-0.3279	-0.3333	0.1049
$C_{D,a}$	0.1873	0.1491	0.1836	0.2071	0.2644	0.3164	0.3575	0.3938	0.4544	0.4907	0.0286	0.0355	0.0517	0.0658	0.0987	0.1448	0.1958	0.2123	0.1799	0.2187	0.2422	0.2664	0.3000	0.3478	0.3932	0.4292	0.4719	0.4824	0.0181	0.0209	0.0224	0.0243	0.0246	0.0339	0.0401	0.0448	0.0454	0.1061	0.1098	0.1127	0.1166	0.1180	0.0182
$C_{L,a}$	0.1939	0.2153	0.2281	0.2362	0.2473	0.2459	0.2285	0.1958	0.1755	0.1573	-0.0554	-0.0151	0.0157	0.0604	0.1221	0.1739	0.2190	0.2296	0.2471	0.2662	0.2752	0.2836	0.2899	0.2840	0.2695	0.2434	0.2089	0.1770	-0.0761	-0.0673	-0.0613	-0.0577	-0.0559	0.0300	0.0639	0.0759	0.0779	0.1699	0.1791	0.1851	0.1905	0.1939	-0.0754
C_l	0.0030	0.0025	0.0027	0.0032	0.0033	0.0028	0.0046	0.0044	0.0046	0.0059	0.0002	0.0004	0.0004	0.0027	0.0030	0.0032	0.0040	0.0040	0.0038	0.0045	0.0035	0.0037	0.0035	0.0036	0.0045	0.0056	0.0057	0.0064	-0.0005	-0.0005	-0.0005	-0.0003	0.0001	0.0013	0.0015	0.0013	0.0017	0.0013	0.0014	0.0016	0.0017	0.0017	-0.0004
ڻ'	-0.0007	-0.0013	-0.0029	0.0030	-0.0032 -0.0013	0.0003	-0.0002	0.0002	-0.0012	-0.0031	0.0195	0.0190	0.0190	0.0141	0.0190	0.0217	0.0194	0.0194	0.0187	0.0152	0.0179	0.0175	0.0198	0.0230	0.0209	0.0211	0.0223	0.0243	0.0014	0.0025	0.0042	0.0085	0.0125	-0.0019	0.000	0.0057	0.0098	0.003	0.0020	0.0037	9800.0	0.0129	0.0018
C_{Y}	0.0015	0.0050	0.0093	0.0113	0.0110	0.000	0.0033	0.0024	0.0067	0.0132	-0.0334	-0.0317	-0.0323	-0.0161	-0.0315	-0.0405	-0.0340	-0.0344	-0.0313	-0.0213	-0.0311	-0.0297	-0.0362	-0.0453	-0.0377	-0.0379	-0.0413	-0.0459	-0.0041	-0.0054	-0.0080	-0.0155	-0.0222	0.0062	0.0036	500.0	-0.0154	0000	-0.0041	-0.0074	-0.0170	-0.0254	-0.0056
C _m	-0.3848	-0.3909	-0.4312	-0.4586	5180 5180	-0.5662	-0.5922	-0.6126	-0.6788	-0.7196	-0.0427	-0.0998	-0.1561	-0.2403	-0.3460	-0.4466	-0.5415	-0.5675	-0.5769	-0.6307	-0.6600	-0.6895	-0.7230	-0.7582	-0.7918	-0.8111	-0.8448	-0.8414	0.1061	0.0791	0.0587	0.0396	0.0263	0.1041	0.1342	5.1.5	1001	-0.2906	-0.3231	-0.3461	-0.3711	-0.3870	0.1049
$C_{(D-F)}$			· ^ -																																						-0.0031		
C_L	0.1939	0.2153	0.2281	0.2362	0.2473	0.2459	0.2285	0.1958	0.1755	0.1573	0.0057	0.0795	0.1439	0.2214	0.3131	0.3973	0.4645	0.4838	0.5225	0.5562	0.5754	0.5934	0.6132	0.6242	0.6307	0.6085	0.5930	0.5701	-0.0761	-0.0587	-0.0466	-0.0357	-0.0282	0.0566	0.08/5	0.1092	0.1337	0 1690	0.2084	0.2379	0.2708	0.2933	-0.0754
NPR	0.99	66.0	0.98		5.6 6.6	0.98	0.98	0.97	0.07	0.07	4.16	4.15	4.18	4.15	4.15	4.15	4.16	4.16	4.16	4.16	4.15	4.15	4.15	4.16	4.16	4.14	4.15	4.15	0.99	2.00	2.99	4.16	4.99	S. 6	8.5	4.39 4.15	60	0 07	2.00	2.99	4.16	4.99	0.99
α, deg	31.66	35.06	38.01	40.03	42.03	49.02	54.99	60.03	65.01	68.22	0.00	5.02	9.95	15.02	19.99	24.99	30.01	31.38	34.97	37.98	39.96	41.97	44.96	49.98	55.00	59.96	64.95	98.00	0.02	0.03	0.05	0.0	0.01	5.03	15.01	14.97	14.08	24 90	24.98	24.98	24.99	24.95	-0.03
M	0.303	0.299	0.299	0.299	0.70	0.250	0.302	0.296	0.299	0.298	0.300	0.301	0.301	0.300	0.300	0.298	0.302	0.301	0.300	0.300	0.299	0.299	0.298	0.300	0.298	0.301	0.299	0.297	0.502	0.501	0.500	0.500	0.499	0.499	0.499	0.433	200	0.500	0.490	0.499	0.498	0.498	0.500

	ζ,	p:1	70007	-0.0003	0.0013	0.0013	0.0013	0.0017	-0.0010	0.0005	0.000	-0.0003	0.001	0.0010	0.0012	0.0017
	ζ,	1 0	0.0017	0.0010	-0.0016	0.0003	0.0008	-0.0023	0.0030	0.000	0.002	0.0014	0.0003	0.0026	0.0032	0.0008
	C_{Y_a}	23000	0.0032	070070	0.0049	-0.0006	-0.0023	0.0073	08000	-0.0052	0.0032	0.0033	0.0003	-0.00/3	0.0099	-0.0022
	$C_{m,a}$	0.0402	0.000	0.0045	0.1045	0.1983	-0.2887	-0.3735	0.0804	0.0254	0.0245	0.0240	0.025	0.2308	0.3272	-0.41/4
	$C_{D,a}$	00100	0.032	0.0252	0.0332	0.0041	0.1031	0.1513	0.0240	0.0262	0.0313	0.030	0.0407	0.0/3/	0.1103	0.1040
	$C_{L,a}$	-0.0352	-0.0033	0.0568	0.0206	0.11.0	0.1000	0.2097	-0.0560	-0.0182	0.0087	0.0745	0.01	0.1349	0.1911	0.2332
Concluded	C_{I}	-0.0002	0003	0.0013	0.0013	0.0013	0.0013	0.0017	-0.0003	0.0001	0.0001	0.0017	71000	0.001	0.0018	4700.0
Table 39. Co	ζ,	0.0017	0.0010	0.0016	0.0003	0000	0.0000	-0.0023	0.0087	0.0079	0.0071	0.0061	0.0084	0.0001	0.006	0000
	C_Y	-0.0052	-0.0026	0.0049	90000	-0.0023	0.0023	0.00/3	0.0166	-0.0139	-0.0121	-0.0091	00160	-0.0186	0109	
	<i>C</i> _m	0.0493	-0.0045	-0.1045	-0.1985	-0.2887	-0.3735	55.00	0.0377	-0.0175	-0.0672	-0.1761	-0.2733	-0.3701	4604	
	$C_{(D-F)}$	0.0192	0.0232	0.0352	0.0641	0.1051	0.1513	0.11.0	0.1170	-0.1128	-0.1037	-0.0879	-0.0508	-0.0029	0.0522	
	C_L	-0.0352	-0.0033	0.0568	0.1156	0.1686	0 2097	0.0340	0.0340	0.0161	0.0548	0.1328	0.2035	0.2710	0.3252	
	NPR	0.99	0.99	0.99	86.0	0.97	96.0	7 16	1.10	4.1/	4.17	4.17	4.17	4.17	4.17	
	α, deg	5.01	10.01	14.98	20.00	24.98	29.98	000	3 3	3.00	9.99	14.99	19.99	24.97	29.98	
	W	0.499	0.500	0.500	0.501	0.500	0.499	0.501	0.501	0.301	0.501	0.499	0.503	0.500	0.500	

Table 40. Typical Engine Performance Characteristics for Full-Scale F-18 HARV at Afterburning Power

[NPR ≈ 4.25 ; Altitude = 20000 ft]

М	α, deg	$F_{g,l}$	$F_{g,r}$
0.30	5	9443.96	9443.96
.30	10	9450.69	9450.69
.30	20	9425.58	9425.58
.30	30	9349.08	9349.08
.30	40	9221.19	9221.19
.30	50	9041.90	9041.90
.30	60	8811.22	8811.22
.30	70	8529.14	8529.14
.30	5	9443.96	9443.96
.40	5	9976.97	9976.97
.50	5	10 704.81	10 704.81
.60	5	11 432.64	11 432.64
.70	5	12 479.99	12479.99

Figure 1. The F-18 High-Alpha Research Vehicle.

Figure 1. Concluded.

Figure 2. F-18 HARV during static testing of thrust-vectoring control system.

Figure 3. Details of F-18 prototype model. Dimensions are in inches unless otherwise noted.

Figure 4. Installation of F-18 prototype model in Langley 16-Foot Transonic Tunnel.

115

L-91-13854

(b) High-angle-of-attack installation.

Figure 4. Concluded.

(a) Thrust-vectoring hardware.

Figure 5. Details of thrust-vectoring hardware installed on F-18 prototype model.

Afterburn	Х,	0.63	0.59	0.55	0.51	0.46	0.42	0.3	0.3%
Afte	δ, deg	-10	ငှ	0	ည	9	<u>र</u>	20	25
ver	y, in.	0.5007	0.4725	0.4478	0.4267	0.4094	0.3960	0.3867	0.3814
Military power	x, in.	0.6330	0.5946	0.5540	0.5114	0.4670	0.4214	0.3747	0.3274
Ž	δ, deg	-10	5-	0	S	9	15	20	25

Atterburning power 8, deg x, in. y, in. -10 0.6330 0.2748 -5 0.5946 0.2466 0 0.5540 0.2219 5 0.5114 0.2008 10 0.4670 0.1835 15 0.4214 0.1701 20 0.3747 0.1608 25 0.3274 0.1555	_									
Afterburning 6, deg x, in10 0.6330 -5 0.5946 0 0.5540 5 0.5114 10 0.4670 15 0.3274 25 0.3274	power	y, in.			22	0.2008	0.1835	0.1701	0.1608	_
After 8, deg -10 -5 0 15 10 15 20 25	burning		0.6330	0.5946		0.5114	0.4670	0.4214	0.3747	
	After	δ, deg	-10	ကု	0	2	9	15	20	25

(b) Sketch of thrust-vectoring hardware showing vane position relative to nozzle exit. Nozzles shown at afterburning power setting.

Figure 5. Concluded.

Figure 6. Details of twin-jet propulsion simulation system and flow-transfer assembly with metric portion shaded. Empennage and lower thrust-vectoring vanes not shown for clarity. Dimensions are in inches unless otherwise noted.

Figure 7. Geometric details of inner nozzles. Dimensions are in inches unless otherwise noted.

(a) Top vanes A and D. Vane planform area = 3.60 in^2 .

Figure 8. Geometry of thrust-vectoring vanes. Dimensions are in inches unless otherwise noted.

121

(b) Lower vanes B, C, E, and F. Vane planform area = 2.63 in^2 .

Figure 8. Concluded.

Figure 9. Geometry details of a typical vane support. Dimensions are in inches unless otherwise noted.

Figure 10. Details of vane support fairings. Dimensions are in inches unless otherwise noted.

(a) Typical outboard and upper surface vane support fairing.

Figure 10. Concluded.

Figure 12. Effect of nozzle power setting on static performance characteristics at M = 0 with vanes fully retracted.

Figure 13. Static performance characteristics at afterburning power and M = 0.

(a) Unvectored.

Figure 13. Continued.

129

Figure 13. Continued.

Figure 13. Continued.

131

Figure 13. Concluded.

132

Figure 14. Static performance characteristics at military power and M = 0.

Figure 14. Continued.

c) water byte and child cur.

Figure 14. Continued.

135

Figure 14. Continued.

Figure 14. Concluded.

137

Static test data Required (ref. 22)

0

Figure 15. Resultant thrust-vectoring envelope at afterburning power and M = 0. Maximum vane deflection angle of 25°.

Figure 16. Resultant thrust-vectoring envelope at military power and M = 0. Maximum vane deflection angle of 25°.

Figure 17. Afterbody aerodynamic characteristics at afterburning power and NPR = 4.25 with vanes fully retracted.

Figure 18. Effect of nozzle power setting on afterbody aerodynamic characteristics at scheduled NPR with vanes fully retracted.

Figure 18. Concluded.

Figure 19. Afterbody aerodynamic characteristics at afterburning power and NPR = 4.25 with vanes A,D deployed.

Figure 19. Continued.

Figure 19. Concluded.

Figure 20. Afterbody aerodynamic characteristics at afterburning power and NPR = 4.25 with vanes B,E and C,F deployed.

Figure 20. Continued.

Figure 20. Concluded.

Figure 21. Afterbody aerodynamic characteristics at afterburning power and NPR = 4.25 with vanes B,E deployed.

Figure 21. Concluded.

Figure 22. Afterbody aerodynamic characteristics at afterburning power and NPR = 4.25 with vanes A,D and B,E deployed.

Figure 22. Concluded.

Figure 23. Individual drag and thrust contributions that make up $C_{(D-F)}$.

Figure 24. Variation in afterbody drag and thrust contributions with angle of attack at afterburning power with NPR = 4.25 and M = 0.30.

Figure 24. Continued.

(c) Vanes B,E deployed.

Figure 24. Continued.

Figure 24. Concluded.

Figure 25. Afterbody aerodynamic characteristics at military power and NPR = 4.15 with vanes A,D deployed.

Figure 25. Concluded.

Figure 26. Afterbody aerodynamic characteristics at military power and NPR = 4.15 with vanes B,E and C,F deployed.

Figure 26. Concluded.

Figure 27. Afterbody aerodynamic characteristics at military power and NPR = 4.15 with vanes B,E deployed.

Figure 27. Concluded.

Figure 28. Afterbody aerodynamic characteristics at military power and NPR = 4.15 with vanes A,D and B,E deployed.

Figure 28. Concluded.

Figure 29. Effect of external flow on pitching moment at afterburning power with NPR = 4.25.

167

Figure 29. Continued.

Figure 29. Continued.

168

(d) Vanes A,D and B,E deployed.Figure 29. Concluded.

70

 α , deg

 α , deg

Figure 30. Effect of external flow on yawing moment at afterburning power with NPR = 4.25.

(a) Vanes B,E deployed.

Figure 31. Computed aerodynamic and propulsive control capability for F-18 HARV. M = 0.30; Altitude = 20000 ft; Afterburning power; NPR = 4.25.

REPORT DOCUMENTATION PAGE Public reporting burden for this collection of information is estimated to average 1 hour per response, including the time for reviewing instructions, searching existing data sources, gathering and maintaining the data needed, and completing and reviewing the collection of information. Send comments regarding this burden estimate or any other aspect of this collection of information, including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information Operations and Reports, 1215 Jefferson Collection of Information (Including suggestions for reducing this burden, to Washington Headquarters Services, Directorate for Information, December 1991, 2014, 4019, and to the Office of Management and Burdent Panagement (1974–1918). Washington, DC 20503.

Davis Highway, Suite 1204, Arlington, VA 22202-	-4302, and to the Office of Management a	nd Budget, Paperwork Reduction	Project (0704-0188), Washington, DC 20503.
1. AGENCY USE ONLY (Leave blank)		3. REPORT TYPE AND	DATES COVERED
	December 1995	Technical Paper	5. FUNDING NUMBERS
4. TITLE AND SUBTITLE Multiaxis Thrust-Vectoring (F-18 High-Alpha Research V	Characteristics of a Model lehicle at Angles of Attack	Representative of the From 0° to 70°	WU 505-59-30-04
6. AUTHOR(S)			
Scott C. Asbury and Francis	J. Capone		
7. PERFORMING ORGANIZATION NA	ME(S) AND ADDRESS(ES)		8. PERFORMING ORGANIZATION REPORT NUMBER
NASA Langley Research Center Hampton, VA 23681-0001			L-17441
9. SPONSORING/MONITORING AGEN	ICY NAME(S) AND ADDRESS(ES)	10. SPONSORING/MONITORING AGENCY REPORT NUMBER
National Aeronautics and Space Administration Washington, DC 20546-0001			NASA TP-3531
11. SUPPLEMENTARY NOTES			
12a. DISTRIBUTION/AVAILABILITY ST	TATEMENT		12b. DISTRIBUTION CODE
Unclassified-Unlimited			
Subject Category 02 Availability: NASA CASI	(301) 621-0390		
vectoring characteristics of t 0.10-scale jet-effects model vectoring control system of 0.70, at angles of attack from cate that the thrust-vectoring forces and moments. During metric vane deflection angle were dependent on Mach ne	the F-18 High-Alpha Reseal of an F-18 prototype air the HARV. Testing was come 0° to 70°, and at nozzle ag control system of the Hig vectoring, resultant thrust e and were accompanied bumber and angle of attack accontrol capabilities of the	rch Vehicle (HARV). craft was modified we nducted at free-stream pressure ratios from 1 (ARV can successfull vector angles were also large thrust losses. were noted during vector HARV configuration	el to determine the multiaxis thrust-A wingtip supported, partially metric, with hardware to simulate the thrust-1 Mach numbers ranging from 0.30 to .0 to approximately 5.0. Results indictly generate multiaxis thrust-vectoring ways less than the corresponding geo-Significant external flow effects that ctoring operation. Comparisons of the indicate that substantial gains in con-
14. SUBJECT TERMS F-18 HARV; Multiaxis thru	st vectoring; Nozzles; Powe	ered controls; Thrust v	vectoring 15. NUMBER OF PAGES 174 16. PRICE CODE A08
17. SECURITY CLASSIFICATION OF REPORT Unclassified	18. SECURITY CLASSIFICATIO OF THIS PAGE Unclassified	N 19. SECURITY CLASS OF ABSTRACT Unclassified	IFICATION 20. LIMITATION OF ABSTRACT

	1
	÷
	•

